Deep Convolutional Neural Network (CNN) Design for Pathology Detection of COVID-19 in Chest X-Ray Images

The coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, turned into a pandemic and raised a serious concern to the global healthcare system. The reverse transcription polymerase chain reaction (RT-PCR) is the most widely used diagnostic tool to detect COVID-19. However, this test is t...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Extraction Vol. 12844; pp. 211 - 223
Main Authors Darapaneni, Narayana, Sil, Anindya, Kagiti, Balaji, Krishna Kumar, S., Ramanathan, N. B., VasanthaKumara, S. B., Paduri, Anwesh Reddy, Manuf, Abdul
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, turned into a pandemic and raised a serious concern to the global healthcare system. The reverse transcription polymerase chain reaction (RT-PCR) is the most widely used diagnostic tool to detect COVID-19. However, this test is time consuming and subject to availability of the test kits during a crisis. An automated method of screening chest x-ray images using convolutional neural network (CNN) Transfer Learning approach has been proposed as a relatively fast and cost-effective, decision support tool to detect pulmonary pathology due to COVID-19. In this study we have used Kaggle dataset with chest x-ray images of normal and pneumonia cases. We have added COVID-19 x-ray images from 5 different open-source datasets. The images were pre-processed based on the position of radiography images and greyscale was applied and subsequently the images were used for training. After consolidation, COVID-19 images comprised only 5% of the dataset. To address the class imbalance, we have used dynamic image augmentation technique to reduce the bias. We have then explored custom CNN and VGG-16, InceptionNet-V3, MobileNet-V2, ResNet-50, and DarkNet-53 transfer learning approaches to classify COVID-19, other pneumonia and normal x-ray images and compared their performances. So far, we have achieved the best score of F1 score 0.95, sensitivity 95% and specificity 95% for COVID-19 class with Darknet-53 feature extractor. Darknet-53 classifier is part of the state-of-the-art object detection algorithm named Yolo-v3. We have also done a McNemar-Bowker post-hoc test to compare Darknet-53 performance with the next best ResNet-50. This test suggests that Darknet-53 is significantly better skilled than ResNet-50 in differentiating COVID-19 from other pneumonia in chest x-ray images.
ISBN:303084059X
9783030840594
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-84060-0_14