Security Analysis of Drone Communication Protocols
Unmanned aerial vehicles (UAV) are increasingly used by hobbyists, companies, and the public sector [1] for a number of purposes. Although this is good, UAVs bear the physical risks of aircrafts as well as those of unmanned systems. Taken into account the exponentially increasing number of UAVs (i.e...
Saved in:
Published in | Engineering Secure Software and Systems Vol. 10953; pp. 96 - 107 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3319944959 9783319944951 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-94496-8_7 |
Cover
Summary: | Unmanned aerial vehicles (UAV) are increasingly used by hobbyists, companies, and the public sector [1] for a number of purposes. Although this is good, UAVs bear the physical risks of aircrafts as well as those of unmanned systems. Taken into account the exponentially increasing number of UAVs (i.e., there will be approximately 1.26 million UAVs in Germany by 2018), these risks are becoming more likely to occur. In addition to operational risks, there are also security related risks. UAVs are typically remotely controlled, which, in turn, opens ways for cyber-attacks (e.g., denial of service or taking over control). In this paper we demonstrate that taking over control of commercially available UAVs is feasible and simple. In detail, we examine and analyze a standard UAV communication and control protocol (i.e., the DSM protocol family by Spektrum Inc.). We discuss common approaches for attacks, minor observations, and associated security vulnerabilities of this protocol. Since the number of commercially available communication components is small, these findings can easily be ported to other protocols such as (HOTT, S-FHSS, FrSky, and others). Finally, we make some recommendations which, if implemented, will significantly improve the security of UAV operations. |
---|---|
ISBN: | 3319944959 9783319944951 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-94496-8_7 |