Multivariate Mean Comparison Under Differential Privacy

The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (e...

Full description

Saved in:
Bibliographic Details
Published inPrivacy in Statistical Databases Vol. 13463; pp. 31 - 45
Main Authors Dunsche, Martin, Kutta, Tim, Dette, Holger
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031139444
3031139445
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-13945-1_3

Cover

Loading…
Abstract The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2 $$t^2$$ -statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach.
AbstractList The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2 $$t^2$$ -statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach.
Author Kutta, Tim
Dette, Holger
Dunsche, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Dunsche
  fullname: Dunsche, Martin
  email: martin.dunsche@ruhr-uni-bochum.de
– sequence: 2
  givenname: Tim
  surname: Kutta
  fullname: Kutta, Tim
– sequence: 3
  givenname: Holger
  surname: Dette
  fullname: Dette, Holger
BookMark eNo1kN1OwzAMhQMMxDb2BNz0BQJ2nTbNJRq_0ia4GNdR2iZQKG1JOiTenozBlXVsf5bPmbFJ13eWsXOECwSQl0oWnDgQciQlMo6aDtiMYuNX0yGbYo7IiYQ6You4_j8TYsKmQJByJQWdsBmSiECREZ2yRQhvAJDKyAk5ZXK9bcfmy_jGjDZZW9Mly_5jiDr0XfLc1dYn141z1ttubEybPPm4XX2fsWNn2mAXf3XONrc3m-U9Xz3ePSyvVnxIBYzcCXIGrMpl5qrSABZSQFmVuXO1qBGM2v2vhCnAGCprlbqCMJeVzRBsTXOG-7Nh8E33Yr0u-_49aAS9S0lH25p0NK5_U9Expcike2bw_efWhlHbHVRFA9601asZRuuDllBkMQidkhYp_QAFCWaa
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2022
Copyright_xml – notice: Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 005.8
DOI 10.1007/978-3-031-13945-1_3
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3031139453
9783031139451
EISSN 1611-3349
Editor Domingo-Ferrer, Josep
Laurent, Maryline
Editor_xml – sequence: 1
  fullname: Domingo-Ferrer, Josep
– sequence: 2
  fullname: Laurent, Maryline
EndPage 45
ExternalDocumentID EBC7085002_23_42
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p240t-f43fa0e9675fcba018740bcb6ffd4d10a9334994a80aa3bd92f83167ce510ed3
ISBN 9783031139444
3031139445
ISSN 0302-9743
IngestDate Tue Jul 29 20:13:21 EDT 2025
Tue Jul 22 07:52:27 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.D343
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-f43fa0e9675fcba018740bcb6ffd4d10a9334994a80aa3bd92f83167ce510ed3
Notes Original Abstract: The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^2$$\end{document}-statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach.
OCLC 1344538533
PQID EBC7085002_23_42
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_031_13945_1_3
proquest_ebookcentralchapters_7085002_23_42
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle International Conference, PSD 2022, Paris, France, September 21-23, 2022, Proceedings
PublicationTitle Privacy in Statistical Databases
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002733447
ssj0002792
Score 2.0722203
Snippet The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools,...
SourceID springer
proquest
SourceType Publisher
StartPage 31
SubjectTerms Differential privacy
Private bootstrap
Private testing
Title Multivariate Mean Comparison Under Differential Privacy
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7085002&ppg=42&c=UERG
http://link.springer.com/10.1007/978-3-031-13945-1_3
Volume 13463
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLIiBt3grAxPIKLGdJhmhKiAETAWxWX5FYimoDQz8eu6cpHnAAksURYll3xedz2ff9xFyahxnJmEpzU08pBjwUh0yR0MrRJyIEDWo8LTF4_D2Sdy9xC-NpqevLin0hfn6ta7kP6jCM8AVq2T_gOyiUXgA94AvXAFhuPaC326atSS9mL1-olb7q9fgLTzhMvowVSicmubtn8GX2X7Cshgiy_MHTL6PGv1BL30Evq9USikwhV613U4JMNZLCdQpwV5SsZXXurzpLCNhGosirJAVHb_IRel7fnjZ9sEK-JTitzGNJG8mlXojvaTO6lFaj69GCVLlhUwyLgXMoMtJGg_IyuX47v55kSKDyAr5CLEip-5gXHImNR1eEEmVXMG9_nSWDb2dbh9ATDbIGhaVBFjtAV3cJEtuukXWa0mNoPKw2yRpIxUgUkGDVOCRCtpIBRVSO2RyPZ6MbmmlbUHfIYYqaC54rkKXwXotN1qV0oja6GGeW2GjUGUw9iwTKg2V4tpmLE-RtMA4cKLO8l0ymL5N3R4JbKJSrpUROkGuH52xyGibOp3ayHIe7pPz2gbSb8BXp35NOeK57ECxT85qM0l8eS5rXmswr-QSzCu9eSWY9-BPTR-S1eZnPSKDYvbhjiGiK_RJhfw3R-tIug
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Privacy+in+Statistical+Databases&rft.atitle=Multivariate+Mean+Comparison+Under+Differential+Privacy&rft.date=2022-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031139444&rft.volume=13463&rft_id=info:doi/10.1007%2F978-3-031-13945-1_3&rft.externalDBID=42&rft.externalDocID=EBC7085002_23_42
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7085002-l.jpg