Multivariate Mean Comparison Under Differential Privacy
The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (e...
Saved in:
Published in | Privacy in Statistical Databases Vol. 13463; pp. 31 - 45 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783031139444 3031139445 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-13945-1_3 |
Cover
Loading…
Abstract | The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2 $$t^2$$ -statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach. |
---|---|
AbstractList | The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2 $$t^2$$ -statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach. |
Author | Kutta, Tim Dette, Holger Dunsche, Martin |
Author_xml | – sequence: 1 givenname: Martin surname: Dunsche fullname: Dunsche, Martin email: martin.dunsche@ruhr-uni-bochum.de – sequence: 2 givenname: Tim surname: Kutta fullname: Kutta, Tim – sequence: 3 givenname: Holger surname: Dette fullname: Dette, Holger |
BookMark | eNo1kN1OwzAMhQMMxDb2BNz0BQJ2nTbNJRq_0ia4GNdR2iZQKG1JOiTenozBlXVsf5bPmbFJ13eWsXOECwSQl0oWnDgQciQlMo6aDtiMYuNX0yGbYo7IiYQ6You4_j8TYsKmQJByJQWdsBmSiECREZ2yRQhvAJDKyAk5ZXK9bcfmy_jGjDZZW9Mly_5jiDr0XfLc1dYn141z1ttubEybPPm4XX2fsWNn2mAXf3XONrc3m-U9Xz3ePSyvVnxIBYzcCXIGrMpl5qrSABZSQFmVuXO1qBGM2v2vhCnAGCprlbqCMJeVzRBsTXOG-7Nh8E33Yr0u-_49aAS9S0lH25p0NK5_U9Expcike2bw_efWhlHbHVRFA9601asZRuuDllBkMQidkhYp_QAFCWaa |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2022 |
DBID | FFUUA |
DEWEY | 005.8 |
DOI | 10.1007/978-3-031-13945-1_3 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 3031139453 9783031139451 |
EISSN | 1611-3349 |
Editor | Domingo-Ferrer, Josep Laurent, Maryline |
Editor_xml | – sequence: 1 fullname: Domingo-Ferrer, Josep – sequence: 2 fullname: Laurent, Maryline |
EndPage | 45 |
ExternalDocumentID | EBC7085002_23_42 |
GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR AIYYB ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z5O Z7R Z7U Z7W Z7X Z7Z Z81 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p240t-f43fa0e9675fcba018740bcb6ffd4d10a9334994a80aa3bd92f83167ce510ed3 |
ISBN | 9783031139444 3031139445 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:13:21 EDT 2025 Tue Jul 22 07:52:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA76.9.D343 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p240t-f43fa0e9675fcba018740bcb6ffd4d10a9334994a80aa3bd92f83167ce510ed3 |
Notes | Original Abstract: The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^2$$\end{document}-statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach. |
OCLC | 1344538533 |
PQID | EBC7085002_23_42 |
PageCount | 15 |
ParticipantIDs | springer_books_10_1007_978_3_031_13945_1_3 proquest_ebookcentralchapters_7085002_23_42 |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | International Conference, PSD 2022, Paris, France, September 21-23, 2022, Proceedings |
PublicationTitle | Privacy in Statistical Databases |
PublicationYear | 2022 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002733447 ssj0002792 |
Score | 2.0722203 |
Snippet | The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools,... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 31 |
SubjectTerms | Differential privacy Private bootstrap Private testing |
Title | Multivariate Mean Comparison Under Differential Privacy |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7085002&ppg=42&c=UERG http://link.springer.com/10.1007/978-3-031-13945-1_3 |
Volume | 13463 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLIiBt3grAxPIKLGdJhmhKiAETAWxWX5FYimoDQz8eu6cpHnAAksURYll3xedz2ff9xFyahxnJmEpzU08pBjwUh0yR0MrRJyIEDWo8LTF4_D2Sdy9xC-NpqevLin0hfn6ta7kP6jCM8AVq2T_gOyiUXgA94AvXAFhuPaC326atSS9mL1-olb7q9fgLTzhMvowVSicmubtn8GX2X7Cshgiy_MHTL6PGv1BL30Evq9USikwhV613U4JMNZLCdQpwV5SsZXXurzpLCNhGosirJAVHb_IRel7fnjZ9sEK-JTitzGNJG8mlXojvaTO6lFaj69GCVLlhUwyLgXMoMtJGg_IyuX47v55kSKDyAr5CLEip-5gXHImNR1eEEmVXMG9_nSWDb2dbh9ATDbIGhaVBFjtAV3cJEtuukXWa0mNoPKw2yRpIxUgUkGDVOCRCtpIBRVSO2RyPZ6MbmmlbUHfIYYqaC54rkKXwXotN1qV0oja6GGeW2GjUGUw9iwTKg2V4tpmLE-RtMA4cKLO8l0ymL5N3R4JbKJSrpUROkGuH52xyGibOp3ayHIe7pPz2gbSb8BXp35NOeK57ECxT85qM0l8eS5rXmswr-QSzCu9eSWY9-BPTR-S1eZnPSKDYvbhjiGiK_RJhfw3R-tIug |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Privacy+in+Statistical+Databases&rft.atitle=Multivariate+Mean+Comparison+Under+Differential+Privacy&rft.date=2022-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031139444&rft.volume=13463&rft_id=info:doi/10.1007%2F978-3-031-13945-1_3&rft.externalDBID=42&rft.externalDocID=EBC7085002_23_42 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7085002-l.jpg |