Multivariate Mean Comparison Under Differential Privacy

The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (e...

Full description

Saved in:
Bibliographic Details
Published inPrivacy in Statistical Databases Vol. 13463; pp. 31 - 45
Main Authors Dunsche, Martin, Kutta, Tim, Dette, Holger
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031139444
3031139445
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-13945-1_3

Cover

Loading…
More Information
Summary:The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2 $$t^2$$ -statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach.
Bibliography:Original Abstract: The comparison of multivariate population means is a central task of statistical inference . While statistical theory provides a variety of analysis tools, they usually do not protect individuals’ privacy. This knowledge can create incentives for participants in a study to conceal their true data (especially for outliers), which might result in a distorted analysis. In this paper, we address this problem by developing a hypothesis test for multivariate mean comparisons that guarantees differential privacy to users. The test statistic is based on the popular Hotelling’s t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^2$$\end{document}-statistic, which has a natural interpretation in terms of the Mahalanobis distance. In order to control the type-1-error, we present a bootstrap algorithm under differential privacy that provably yields a reliable test decision. In an empirical study, we demonstrate the applicability of this approach.
ISBN:9783031139444
3031139445
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-13945-1_3