Repeatability of Radiomic Features Against Simulated Scanning Position Stochasticity Across Imaging Modalities and Cancer Subtypes: A Retrospective Multi-institutional Study on Head-and-Neck Cases

We attempted to investigate the Radiomic feature (RF) repeatability and its agreements across imaging modalities and head-and-neck cancer (HNC) subtypes via image perturbations. Contrast-enhanced computed tomography (CECT), CET1-weight, T2-weight magnetic resonance images of 231 nasopharyngeal carci...

Full description

Saved in:
Bibliographic Details
Published inComputational Mathematics Modeling in Cancer Analysis Vol. 13574; pp. 21 - 34
Main Authors Zhang, Jiang, Lam, Saikit, Teng, Xinzhi, Zhang, Yuanpeng, Ma, Zongrui, Lee, Francis, Au, Kwok-hung, Yip, Wai Yi, Chang, Tien Yee Amy, Chan, Wing Chi Lawrence, Lee, Victor, Wu, Q. Jackie, Cai, Jing
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We attempted to investigate the Radiomic feature (RF) repeatability and its agreements across imaging modalities and head-and-neck cancer (HNC) subtypes via image perturbations. Contrast-enhanced computed tomography (CECT), CET1-weight, T2-weight magnetic resonance images of 231 nasopharyngeal carcinoma (NPC) patients, and CECT images of 399 oropharyngeal carcinoma (OPC) patients were retrospectively analyzed. Randomized translation and rotation were implemented to the images for mimicking scanning position stochasticity. 1288 RFs from unfiltered, Laplacian-of-Gaussian-filtered (LoG), and wavelet-filtered images were subsequently computed per perturbed image. The intra-class correlation coefficient (ICC) was calculated to assess RF repeatability. The mean absolute difference (MAD) of the ICC and the binarized repeatability consistency between image sets were adopted to evaluate its agreements across imaging modalities and HNC subtypes. Bias from feature collinearity was also investigated. All the shape RFs and the majority of RFs from unfiltered (≥ $$\ge $$ 83.5%) and LoG-filtered (≥ $$\ge $$ 93%) images showed high repeatability (ICC ≥ $$\ge $$ 0.9) in all studied datasets, whereas more than 50% of the wavelet-filtered RFs had low repeatability (ICC < 0.9). RF repeatability agreements between imaging modalities within the NPC cohort were outstanding (MAD < 0.05, consistency > 0.9) and slightly higher between the NPC and OPC cohort (MAD = 0.06, consistency = 0.89). Minimum bias from feature collinearity was observed. We urge caution when handling wavelet-filtered RFs and advise taking initiatives to exclude underperforming RFs during feature pre-selection for robust model construction.
Bibliography:Original Abstract: We attempted to investigate the Radiomic feature (RF) repeatability and its agreements across imaging modalities and head-and-neck cancer (HNC) subtypes via image perturbations. Contrast-enhanced computed tomography (CECT), CET1-weight, T2-weight magnetic resonance images of 231 nasopharyngeal carcinoma (NPC) patients, and CECT images of 399 oropharyngeal carcinoma (OPC) patients were retrospectively analyzed. Randomized translation and rotation were implemented to the images for mimicking scanning position stochasticity. 1288 RFs from unfiltered, Laplacian-of-Gaussian-filtered (LoG), and wavelet-filtered images were subsequently computed per perturbed image. The intra-class correlation coefficient (ICC) was calculated to assess RF repeatability. The mean absolute difference (MAD) of the ICC and the binarized repeatability consistency between image sets were adopted to evaluate its agreements across imaging modalities and HNC subtypes. Bias from feature collinearity was also investigated. All the shape RFs and the majority of RFs from unfiltered (≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge $$\end{document}83.5%) and LoG-filtered (≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge $$\end{document}93%) images showed high repeatability (ICC ≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge $$\end{document} 0.9) in all studied datasets, whereas more than 50% of the wavelet-filtered RFs had low repeatability (ICC < 0.9). RF repeatability agreements between imaging modalities within the NPC cohort were outstanding (MAD < 0.05, consistency > 0.9) and slightly higher between the NPC and OPC cohort (MAD = 0.06, consistency = 0.89). Minimum bias from feature collinearity was observed. We urge caution when handling wavelet-filtered RFs and advise taking initiatives to exclude underperforming RFs during feature pre-selection for robust model construction.
ISBN:9783031172656
3031172655
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-17266-3_3