Evaluating Semantic Similarity Methods to Build Semantic Predictability Norms of Reading Data
Predictability corpora built via Cloze task generally accompany eye-tracking data for the study of processing costs of linguistic structures in tasks of reading for comprehension. Two semantic measures are commonly calculated to evaluate expectations about forthcoming words: (i) the semantic fit of...
Saved in:
Published in | Text, Speech, and Dialogue Vol. 12848; pp. 35 - 47 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Predictability corpora built via Cloze task generally accompany eye-tracking data for the study of processing costs of linguistic structures in tasks of reading for comprehension. Two semantic measures are commonly calculated to evaluate expectations about forthcoming words: (i) the semantic fit of the target word with the previous context of a sentence, and (ii) semantic similarity scores that represent the semantic similarity between the target word and Cloze task responses for it. For Brazilian Portuguese (BP), there was no large eye-tracking corpora with predictability norms. The goal of this paper is to present a method to calculate the two semantic measures used in the first BP corpus of eye movements during silent reading of short paragraphs by undergraduate students. The method was informed by a large evaluation of both static and contextualized word embeddings, trained on large corpora of texts. Here, we make publicly available: (i) a BP corpus for a sentence-completion task to evaluate semantic similarity, (ii) a new methodology to build this corpus based on the scores of Cloze data taken from our project, and (iii) a hybrid method to compute the two semantic measures in order to build predictability corpora in BP. |
---|---|
ISBN: | 303083526X 9783030835262 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-83527-9_3 |