Discrete Models of Continuous Behavior of Collective Adaptive Systems
Artificial ants are “small” units, moving autonomously on a shared, dynamically changing “space”, directly or indirectly exchanging some kind of information. Artificial ants are frequently conceived as a paradigm for collective adaptive systems. In this paper, we discuss means to represent continuou...
Saved in:
Published in | Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning Vol. 13703; pp. 65 - 81 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer
2022
Springer Nature Switzerland |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3031197585 9783031197581 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-19759-8_5 |
Cover
Summary: | Artificial ants are “small” units, moving autonomously on a shared, dynamically changing “space”, directly or indirectly exchanging some kind of information. Artificial ants are frequently conceived as a paradigm for collective adaptive systems. In this paper, we discuss means to represent continuous moves of “ants” in discrete models. More generally, we challenge the role of the notion of “time” in artificial ant systems and models. We suggest a modeling framework that structures behavior along causal dependencies, and not along temporal relations. We present all arguments by help of a simple example. As a modeling framework we employ Heraklit; an emerging framework that already has proven its worth in many contexts. |
---|---|
ISBN: | 3031197585 9783031197581 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-19759-8_5 |