Image Anomaly Detection with Generative Adversarial Networks
Many anomaly detection methods exist that perform well on low-dimensional problems however there is a notable lack of effective methods for high-dimensional spaces, such as images. Inspired by recent successes in deep learning we propose a novel approach to anomaly detection using generative adversa...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases Vol. 11051; pp. 3 - 17 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Abstract | Many anomaly detection methods exist that perform well on low-dimensional problems however there is a notable lack of effective methods for high-dimensional spaces, such as images. Inspired by recent successes in deep learning we propose a novel approach to anomaly detection using generative adversarial networks. Given a sample under consideration, our method is based on searching for a good representation of that sample in the latent space of the generator; if such a representation is not found, the sample is deemed anomalous. We achieve state-of-the-art performance on standard image benchmark datasets and visual inspection of the most anomalous samples reveals that our method does indeed return anomalies. |
---|---|
AbstractList | Many anomaly detection methods exist that perform well on low-dimensional problems however there is a notable lack of effective methods for high-dimensional spaces, such as images. Inspired by recent successes in deep learning we propose a novel approach to anomaly detection using generative adversarial networks. Given a sample under consideration, our method is based on searching for a good representation of that sample in the latent space of the generator; if such a representation is not found, the sample is deemed anomalous. We achieve state-of-the-art performance on standard image benchmark datasets and visual inspection of the most anomalous samples reveals that our method does indeed return anomalies. |
Author | Kloft, Marius Mandt, Stephan Ruff, Lukas Vandermeulen, Robert Deecke, Lucas |
Author_xml | – sequence: 1 givenname: Lucas surname: Deecke fullname: Deecke, Lucas email: l.deecke@ed.ac.uk – sequence: 2 givenname: Robert surname: Vandermeulen fullname: Vandermeulen, Robert – sequence: 3 givenname: Lukas surname: Ruff fullname: Ruff, Lukas – sequence: 4 givenname: Stephan surname: Mandt fullname: Mandt, Stephan – sequence: 5 givenname: Marius surname: Kloft fullname: Kloft, Marius |
BookMark | eNpVkMtOw0AMRQcoiAL9Ajb5gQF7PI9GYlOVp4RgA-vRpHEgtCQlGVrx90xbNqxsHftavvdEDJq2YSHOES4QwF3mbixJAoFEyJWRzuOeGCVKiW2R2xdDtIiSSOcH_2YaBmKYeiVzp-lInCCMicAptMdi1PcfAKAQrTFuKK4ePsMbZ5Om_QyLn-yaI89i3TbZuo7v2R033IVYr9JGueKuD10dFtkTx3XbzfszcViFRc-jv3oqXm9vXqb38vH57mE6eZTL9EyUhAVbKEJRFcBGWSrIONLBWW3KUlUzq0xeMFitCkYDtjKlqXQCZe6CCnQqcHe3X3Z188adL9p23nsEv4nLJ_OefLLst9n4FFfSqJ1m2bVf39xHzxvRjJvYhcXsPSxj8uNNrlADedSeHP0CXmpo9w |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DEWEY | 6.31 |
DOI | 10.1007/978-3-030-10925-7_1 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030109257 3030109259 |
EISSN | 1611-3349 |
Editor | Berlingerio, Michele Ifrim, Georgiana Hurley, Neil Gärtner, Thomas Bonchi, Francesco |
Editor_xml | – sequence: 1 fullname: Berlingerio, Michele – sequence: 2 fullname: Ifrim, Georgiana – sequence: 3 fullname: Gärtner, Thomas – sequence: 4 fullname: Bonchi, Francesco – sequence: 5 fullname: Hurley, Neil |
EndPage | 17 |
ExternalDocumentID | EBC5921403_14_37 |
GroupedDBID | 0D6 0DA 38. AABBV AEDXK AEJLV AEKFX AEZAY AIFIR ALEXF ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p240t-31be60babfb0e5263b35734a7645dd2fc6259be0642be1506f5d5f4e06d97a2a3 |
ISBN | 9783030109240 3030109240 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:13:46 EDT 2025 Mon Apr 07 21:44:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p240t-31be60babfb0e5263b35734a7645dd2fc6259be0642be1506f5d5f4e06d97a2a3 |
Notes | L. Deecke and R. Vandermeulen—Equal contributions. |
OCLC | 1083307216 |
PQID | EBC5921403_14_37 |
PageCount | 15 |
ParticipantIDs | springer_books_10_1007_978_3_030_10925_7_1 proquest_ebookcentralchapters_5921403_14_37 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug |
SSID | ssj0002116557 ssj0002792 |
Score | 2.3917456 |
Snippet | Many anomaly detection methods exist that perform well on low-dimensional problems however there is a notable lack of effective methods for high-dimensional... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 3 |
Title | Image Anomaly Detection with Generative Adversarial Networks |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921403&ppg=37 http://link.springer.com/10.1007/978-3-030-10925-7_1 |
Volume | 11051 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcdyk69I2maQoOnRqoUERRkoF2CNIUQep6SoJsBEmdlsZ2UEtD-1f6Z3PHhyS7XdJFtgmKou-EI-_43XeMvZdC48KjdQJA0aoajpKqKY-SprC4YFQzKBrH9rkozi7z82t5PZn8GaGWutZ8tL__mVfyP1rFNtQrZcneQ7P9oNiA31G_eEUN43Vn87sdZg0VhggGCZEh1acafoshMqLVtATPdHl9X3Srab0aqsgDWA_LmVPVs9h85XJdltDdeGvkcdf9oUznKRzn3Y_hlu94S9vjxeK7FvDxS0IEHa_WS33zC01bC74wuQv-esJrh1xyVaE32hUQWXhcuh-fpAibz_Nw0LFYtw4_dhhrUUTTNI5dULrUVuwixi53op9DAG7L2RXkvaXoL6YjGynQoKNL5G0keBteEDOj8EyowS6L0QLvc0X_WjrGaBEcNqFHyaRU6Fo_KCs5ZQ-PT8_nV30ALyPiItl79ykxMfojKz8jSiTqZ-ypnobfPf-VpzjeeeKWt7NzQO_2PRdP2WPKheGUpIKie8YmsHrOnkTp8yD9F-yT0zQPmua9pjlpmg-a5iNN86jpl-zy6-nFyVkS6nIktzj1FpdtA0VqtGlMCjIrhBGyFLkui1zWddZY8qkNkGtrgBgsG1nLJseGelbqTItXbLpar-A149hV55Uu6xw_C53NLDr41qLJSHUGptpjh1ESyqEHAmTZ-v-9UXKWEeMkerBKlHvsQxSWos4bFUm5UchKKBSyckJWKOQ39-m8zx4N7-9bNm1_dnCAu9HWvAvvxR3bIYRJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.au=Deecke%2C+Lucas&rft.au=Vandermeulen%2C+Robert&rft.au=Ruff%2C+Lukas&rft.au=Mandt%2C+Stephan&rft.atitle=Image+Anomaly+Detection+with+Generative+Adversarial+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030109240&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=3&rft.epage=17&rft_id=info:doi/10.1007%2F978-3-030-10925-7_1 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921403-l.jpg |