Image Anomaly Detection with Generative Adversarial Networks
Many anomaly detection methods exist that perform well on low-dimensional problems however there is a notable lack of effective methods for high-dimensional spaces, such as images. Inspired by recent successes in deep learning we propose a novel approach to anomaly detection using generative adversa...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases Vol. 11051; pp. 3 - 17 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Summary: | Many anomaly detection methods exist that perform well on low-dimensional problems however there is a notable lack of effective methods for high-dimensional spaces, such as images. Inspired by recent successes in deep learning we propose a novel approach to anomaly detection using generative adversarial networks. Given a sample under consideration, our method is based on searching for a good representation of that sample in the latent space of the generator; if such a representation is not found, the sample is deemed anomalous. We achieve state-of-the-art performance on standard image benchmark datasets and visual inspection of the most anomalous samples reveals that our method does indeed return anomalies. |
---|---|
Bibliography: | L. Deecke and R. Vandermeulen—Equal contributions. |
ISBN: | 9783030109240 3030109240 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-10925-7_1 |