Tomato Detection Using Deep Learning for Robotics Application
The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the...
Saved in:
Published in | Progress in Artificial Intelligence Vol. 12981; pp. 27 - 38 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the needs surrounding the different processes of the different cultures. This paper compares the performance between two datasets for robotics fruit harvesting using four deep learning object detection models: YOLOv4, SSD ResNet 50, SSD Inception v2, SSD MobileNet v2. This work aims to benchmark the Open Images Dataset v6 (OIDv6) against an acquired dataset inside a tomatoes greenhouse for tomato detection in agricultural environments, using a test dataset with acquired non augmented images. The results highlight the benefit of using self-acquired datasets for the detection of tomatoes because the state-of-the-art datasets, as OIDv6, lack some relevant characteristics of the fruits in the agricultural environment, as the shape and the color. Detections in greenhouses environments differ greatly from the data inside the OIDv6, which has fewer annotations per image and the tomato is generally riped (reddish). Standing out in the use of our tomato dataset, YOLOv4 stood out with a precision of 91%. The tomato dataset was augmented and is publicly available (See https://rdm.inesctec.pt/ and https://rdm.inesctec.pt/dataset/ii-2021-001). |
---|---|
AbstractList | The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the needs surrounding the different processes of the different cultures. This paper compares the performance between two datasets for robotics fruit harvesting using four deep learning object detection models: YOLOv4, SSD ResNet 50, SSD Inception v2, SSD MobileNet v2. This work aims to benchmark the Open Images Dataset v6 (OIDv6) against an acquired dataset inside a tomatoes greenhouse for tomato detection in agricultural environments, using a test dataset with acquired non augmented images. The results highlight the benefit of using self-acquired datasets for the detection of tomatoes because the state-of-the-art datasets, as OIDv6, lack some relevant characteristics of the fruits in the agricultural environment, as the shape and the color. Detections in greenhouses environments differ greatly from the data inside the OIDv6, which has fewer annotations per image and the tomato is generally riped (reddish). Standing out in the use of our tomato dataset, YOLOv4 stood out with a precision of 91%. The tomato dataset was augmented and is publicly available (See https://rdm.inesctec.pt/ and https://rdm.inesctec.pt/dataset/ii-2021-001). |
Author | Magalhães, Sandro Augusto Moreira, Germano dos Santos, Filipe Neves Oliveira, Miguel Padilha, Tiago Cerveira Cunha, Mário |
Author_xml | – sequence: 1 givenname: Tiago Cerveira orcidid: 0000-0003-3095-4553 surname: Padilha fullname: Padilha, Tiago Cerveira – sequence: 2 givenname: Germano orcidid: 0000-0002-1382-8267 surname: Moreira fullname: Moreira, Germano – sequence: 3 givenname: Sandro Augusto orcidid: 0000-0002-3095-197X surname: Magalhães fullname: Magalhães, Sandro Augusto – sequence: 4 givenname: Filipe Neves orcidid: 0000-0002-8486-6113 surname: dos Santos fullname: dos Santos, Filipe Neves email: fbsantos@inesctec.pt – sequence: 5 givenname: Mário orcidid: 0000-0002-8299-324X surname: Cunha fullname: Cunha, Mário – sequence: 6 givenname: Miguel orcidid: 0000-0002-9288-5058 surname: Oliveira fullname: Oliveira, Miguel |
BookMark | eNpNUMtOAzEMDFAQbekXcNkfCOSxWScHDhVvqRISas9RNk1goWzCJvw_2ZYDF9sz9lj2zNCkD71D6JKSK0oIXCuQmGPCCZYNK1FofoQWheWF21PiGE1pQynmvFYn_3tMqQmalpphBTU_QzPKGimgLp1ztEjpgxDCgAERZIpu1uHL5FDduexs7kJfbVLXvxXsYrVyZuhH5MNQvYY25M6mahnjrrNmHL5Ap97sklv85TnaPNyvb5_w6uXx-Xa5wpHVJGNmjDINo84aKTwYUoOgAFZQ5beq5e3WMi-JAuPbrVS1B1DSSgaNZy0Xls8RPexNcSj3uEG3IXwmTYke_dLle811-VnvzdHFr6JhB00cwvePS1m7UWRdnwezs-8mZjck3QCjILjmUouG_wLQMGld |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DEWEY | 006.3 |
DOI | 10.1007/978-3-030-86230-5_3 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030862305 3030862305 |
EISSN | 1611-3349 |
Editor | Melo, Francisco S Reis, Luís Paulo Marreiros, Goreti Lau, Nuno Lopes Cardoso, Henrique |
Editor_xml | – sequence: 1 fullname: Reis, Luís Paulo – sequence: 1 givenname: Goreti orcidid: 0000-0003-4417-8401 surname: Marreiros fullname: Marreiros, Goreti email: mgt@isep.ipp.pt – sequence: 2 fullname: Marreiros, Goreti – sequence: 2 givenname: Francisco S. orcidid: 0000-0001-5705-7372 surname: Melo fullname: Melo, Francisco S. email: fmelo@inesc-id.pt – sequence: 3 fullname: Melo, Francisco S – sequence: 3 givenname: Nuno orcidid: 0000-0003-0513-158X surname: Lau fullname: Lau, Nuno email: nunolau@ua.pt – sequence: 4 fullname: Lau, Nuno – sequence: 4 givenname: Henrique orcidid: 0000-0003-1252-7515 surname: Lopes Cardoso fullname: Lopes Cardoso, Henrique email: hlc@fe.up.pt – sequence: 5 fullname: Lopes Cardoso, Henrique – sequence: 5 givenname: Luís Paulo orcidid: 0000-0002-4709-1718 surname: Reis fullname: Reis, Luís Paulo email: lpreis@fe.up.pt |
EndPage | 38 |
ExternalDocumentID | EBC6721753_38_56 |
GroupedDBID | 38. AABBV AABLV ABNDO ACNBG ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TGIZN TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p240t-2aa9a621eca85f7a0475177c519fd9b3bdc2f8097afbd894f7798c8276f2b35c3 |
ISBN | 9783030862299 3030862291 |
ISSN | 0302-9743 |
IngestDate | Wed Nov 06 06:45:50 EST 2024 Thu Jul 25 23:18:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p240t-2aa9a621eca85f7a0475177c519fd9b3bdc2f8097afbd894f7798c8276f2b35c3 |
OCLC | 1268574229 |
ORCID | 0000-0002-8299-324X 0000-0002-9288-5058 0000-0002-1382-8267 0000-0002-3095-197X 0000-0002-8486-6113 0000-0003-3095-4553 |
PQID | EBC6721753_38_56 |
PageCount | 12 |
ParticipantIDs | springer_books_10_1007_978_3_030_86230_5_3 proquest_ebookcentralchapters_6721753_38_56 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 20th EPIA Conference on Artificial Intelligence, EPIA 2021, Virtual Event, September 7-9, 2021, Proceedings |
PublicationTitle | Progress in Artificial Intelligence |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002727050 ssj0002792 |
Score | 2.06 |
Snippet | The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 27 |
SubjectTerms | Agricultural robotics Computer vision Fruit detection Harvesting robotics Machine learning |
Title | Tomato Detection Using Deep Learning for Robotics Application |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6721753&ppg=56 http://link.springer.com/10.1007/978-3-030-86230-5_3 |
Volume | 12981 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECacdAk69I2mL2joVEOFRUqkNHQw8mgQJBlap8hGkBTVGmitwJY79Ef1N_aOFCVZ7ZIugi0RetxHHMm7j98R8jbJFE0Us7FJVRXDCGVilWZlzE1iraBaaSemc3nFz67T85vsZjL5PWAtbRv93vz6576S_0EVzgGuuEv2Dsh2N4UT8BvwhSMgDMfR5Hc3zOpFL5BZhX4KIxZrR_nxwhm9xmafHyqX331mZ7FE4sUR8hyX684lX2KBTldxaPoRXfWq7iPVMIR8c-l05j3KZ4UaB9P59usWJo6hXVlv8ErjWXunGKVB8uTPQFFsO2X9A2vNHNvG-hLlnrFwbO1tUHr1vM5Pta6dgPS8T7B7B4jCzJsPF23q46puHKNsGqpTBGc1jGbQZBTNCNHMUTy0D8ntLH8Ziu1wSn2JpbANDFw8LJK817Teq3PUamReGzV4ajEY873AzF-jyZBAAveN4VlwzCTbI3uiAH96b35yfvGli-lRmAzOMEt8EP4XbRbLvxLuLQqvnHj1p_4TOkksr3o8euLOAmiUs3dTocVDch-3x0S4bwVs94hM7OoxeRDMH7Xmf0JarKMO68hhHSHWUcA6AqyjgHU0wPopuT49WRydxW2tjvgW5oRNTJUqFKeJNSrPKqFmqcgSIQwsEKqy0EyXhlb5rBCq0mVepJUQRW5yKnhFNcsMe0b2V_XKPidRXnHDjIJ1RMlSbq3KZyU1TGcaFvN2lh-SaTCFdIyClsZs_IdvJBcU9Wcly2XGD8m7YC2JjTcyCHWDlSWTYGXprCzByi_u0vglOeh78Cuy36y39jXMUBv9pu0YfwBMO4r3 |
link.rule.ids | 782,783,787,796,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Progress+in+Artificial+Intelligence&rft.au=Padilha%2C+Tiago+Cerveira&rft.au=Moreira%2C+Germano&rft.au=Magalh%C3%A3es%2C+Sandro+Augusto&rft.au=dos+Santos%2C+Filipe+Neves&rft.atitle=Tomato+Detection+Using+Deep+Learning+for+Robotics+Application&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030862299&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=27&rft.epage=38&rft_id=info:doi/10.1007%2F978-3-030-86230-5_3 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6721753-l.jpg |