Tomato Detection Using Deep Learning for Robotics Application

The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the...

Full description

Saved in:
Bibliographic Details
Published inProgress in Artificial Intelligence Vol. 12981; pp. 27 - 38
Main Authors Padilha, Tiago Cerveira, Moreira, Germano, Magalhães, Sandro Augusto, dos Santos, Filipe Neves, Cunha, Mário, Oliveira, Miguel
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the needs surrounding the different processes of the different cultures. This paper compares the performance between two datasets for robotics fruit harvesting using four deep learning object detection models: YOLOv4, SSD ResNet 50, SSD Inception v2, SSD MobileNet v2. This work aims to benchmark the Open Images Dataset v6 (OIDv6) against an acquired dataset inside a tomatoes greenhouse for tomato detection in agricultural environments, using a test dataset with acquired non augmented images. The results highlight the benefit of using self-acquired datasets for the detection of tomatoes because the state-of-the-art datasets, as OIDv6, lack some relevant characteristics of the fruits in the agricultural environment, as the shape and the color. Detections in greenhouses environments differ greatly from the data inside the OIDv6, which has fewer annotations per image and the tomato is generally riped (reddish). Standing out in the use of our tomato dataset, YOLOv4 stood out with a precision of 91%. The tomato dataset was augmented and is publicly available (See https://rdm.inesctec.pt/ and https://rdm.inesctec.pt/dataset/ii-2021-001).
AbstractList The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the needs surrounding the different processes of the different cultures. This paper compares the performance between two datasets for robotics fruit harvesting using four deep learning object detection models: YOLOv4, SSD ResNet 50, SSD Inception v2, SSD MobileNet v2. This work aims to benchmark the Open Images Dataset v6 (OIDv6) against an acquired dataset inside a tomatoes greenhouse for tomato detection in agricultural environments, using a test dataset with acquired non augmented images. The results highlight the benefit of using self-acquired datasets for the detection of tomatoes because the state-of-the-art datasets, as OIDv6, lack some relevant characteristics of the fruits in the agricultural environment, as the shape and the color. Detections in greenhouses environments differ greatly from the data inside the OIDv6, which has fewer annotations per image and the tomato is generally riped (reddish). Standing out in the use of our tomato dataset, YOLOv4 stood out with a precision of 91%. The tomato dataset was augmented and is publicly available (See https://rdm.inesctec.pt/ and https://rdm.inesctec.pt/dataset/ii-2021-001).
Author Magalhães, Sandro Augusto
Moreira, Germano
dos Santos, Filipe Neves
Oliveira, Miguel
Padilha, Tiago Cerveira
Cunha, Mário
Author_xml – sequence: 1
  givenname: Tiago Cerveira
  orcidid: 0000-0003-3095-4553
  surname: Padilha
  fullname: Padilha, Tiago Cerveira
– sequence: 2
  givenname: Germano
  orcidid: 0000-0002-1382-8267
  surname: Moreira
  fullname: Moreira, Germano
– sequence: 3
  givenname: Sandro Augusto
  orcidid: 0000-0002-3095-197X
  surname: Magalhães
  fullname: Magalhães, Sandro Augusto
– sequence: 4
  givenname: Filipe Neves
  orcidid: 0000-0002-8486-6113
  surname: dos Santos
  fullname: dos Santos, Filipe Neves
  email: fbsantos@inesctec.pt
– sequence: 5
  givenname: Mário
  orcidid: 0000-0002-8299-324X
  surname: Cunha
  fullname: Cunha, Mário
– sequence: 6
  givenname: Miguel
  orcidid: 0000-0002-9288-5058
  surname: Oliveira
  fullname: Oliveira, Miguel
BookMark eNpNUMtOAzEMDFAQbekXcNkfCOSxWScHDhVvqRISas9RNk1goWzCJvw_2ZYDF9sz9lj2zNCkD71D6JKSK0oIXCuQmGPCCZYNK1FofoQWheWF21PiGE1pQynmvFYn_3tMqQmalpphBTU_QzPKGimgLp1ztEjpgxDCgAERZIpu1uHL5FDduexs7kJfbVLXvxXsYrVyZuhH5MNQvYY25M6mahnjrrNmHL5Ap97sklv85TnaPNyvb5_w6uXx-Xa5wpHVJGNmjDINo84aKTwYUoOgAFZQ5beq5e3WMi-JAuPbrVS1B1DSSgaNZy0Xls8RPexNcSj3uEG3IXwmTYke_dLle811-VnvzdHFr6JhB00cwvePS1m7UWRdnwezs-8mZjck3QCjILjmUouG_wLQMGld
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 006.3
DOI 10.1007/978-3-030-86230-5_3
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030862305
3030862305
EISSN 1611-3349
Editor Melo, Francisco S
Reis, Luís Paulo
Marreiros, Goreti
Lau, Nuno
Lopes Cardoso, Henrique
Editor_xml – sequence: 1
  fullname: Reis, Luís Paulo
– sequence: 1
  givenname: Goreti
  orcidid: 0000-0003-4417-8401
  surname: Marreiros
  fullname: Marreiros, Goreti
  email: mgt@isep.ipp.pt
– sequence: 2
  fullname: Marreiros, Goreti
– sequence: 2
  givenname: Francisco S.
  orcidid: 0000-0001-5705-7372
  surname: Melo
  fullname: Melo, Francisco S.
  email: fmelo@inesc-id.pt
– sequence: 3
  fullname: Melo, Francisco S
– sequence: 3
  givenname: Nuno
  orcidid: 0000-0003-0513-158X
  surname: Lau
  fullname: Lau, Nuno
  email: nunolau@ua.pt
– sequence: 4
  fullname: Lau, Nuno
– sequence: 4
  givenname: Henrique
  orcidid: 0000-0003-1252-7515
  surname: Lopes Cardoso
  fullname: Lopes Cardoso, Henrique
  email: hlc@fe.up.pt
– sequence: 5
  fullname: Lopes Cardoso, Henrique
– sequence: 5
  givenname: Luís Paulo
  orcidid: 0000-0002-4709-1718
  surname: Reis
  fullname: Reis, Luís Paulo
  email: lpreis@fe.up.pt
EndPage 38
ExternalDocumentID EBC6721753_38_56
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACNBG
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TGIZN
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p240t-2aa9a621eca85f7a0475177c519fd9b3bdc2f8097afbd894f7798c8276f2b35c3
ISBN 9783030862299
3030862291
ISSN 0302-9743
IngestDate Wed Nov 06 06:45:50 EST 2024
Thu Jul 25 23:18:03 EDT 2024
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-2aa9a621eca85f7a0475177c519fd9b3bdc2f8097afbd894f7798c8276f2b35c3
OCLC 1268574229
ORCID 0000-0002-8299-324X
0000-0002-9288-5058
0000-0002-1382-8267
0000-0002-3095-197X
0000-0002-8486-6113
0000-0003-3095-4553
PQID EBC6721753_38_56
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_86230_5_3
proquest_ebookcentralchapters_6721753_38_56
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 20th EPIA Conference on Artificial Intelligence, EPIA 2021, Virtual Event, September 7-9, 2021, Proceedings
PublicationTitle Progress in Artificial Intelligence
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002727050
ssj0002792
Score 2.06
Snippet The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our...
SourceID springer
proquest
SourceType Publisher
StartPage 27
SubjectTerms Agricultural robotics
Computer vision
Fruit detection
Harvesting robotics
Machine learning
Title Tomato Detection Using Deep Learning for Robotics Application
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6721753&ppg=56
http://link.springer.com/10.1007/978-3-030-86230-5_3
Volume 12981
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECacdAk69I2mL2joVEOFRUqkNHQw8mgQJBlap8hGkBTVGmitwJY79Ef1N_aOFCVZ7ZIugi0RetxHHMm7j98R8jbJFE0Us7FJVRXDCGVilWZlzE1iraBaaSemc3nFz67T85vsZjL5PWAtbRv93vz6576S_0EVzgGuuEv2Dsh2N4UT8BvwhSMgDMfR5Hc3zOpFL5BZhX4KIxZrR_nxwhm9xmafHyqX331mZ7FE4sUR8hyX684lX2KBTldxaPoRXfWq7iPVMIR8c-l05j3KZ4UaB9P59usWJo6hXVlv8ErjWXunGKVB8uTPQFFsO2X9A2vNHNvG-hLlnrFwbO1tUHr1vM5Pta6dgPS8T7B7B4jCzJsPF23q46puHKNsGqpTBGc1jGbQZBTNCNHMUTy0D8ntLH8Ziu1wSn2JpbANDFw8LJK817Teq3PUamReGzV4ajEY873AzF-jyZBAAveN4VlwzCTbI3uiAH96b35yfvGli-lRmAzOMEt8EP4XbRbLvxLuLQqvnHj1p_4TOkksr3o8euLOAmiUs3dTocVDch-3x0S4bwVs94hM7OoxeRDMH7Xmf0JarKMO68hhHSHWUcA6AqyjgHU0wPopuT49WRydxW2tjvgW5oRNTJUqFKeJNSrPKqFmqcgSIQwsEKqy0EyXhlb5rBCq0mVepJUQRW5yKnhFNcsMe0b2V_XKPidRXnHDjIJ1RMlSbq3KZyU1TGcaFvN2lh-SaTCFdIyClsZs_IdvJBcU9Wcly2XGD8m7YC2JjTcyCHWDlSWTYGXprCzByi_u0vglOeh78Cuy36y39jXMUBv9pu0YfwBMO4r3
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Progress+in+Artificial+Intelligence&rft.au=Padilha%2C+Tiago+Cerveira&rft.au=Moreira%2C+Germano&rft.au=Magalh%C3%A3es%2C+Sandro+Augusto&rft.au=dos+Santos%2C+Filipe+Neves&rft.atitle=Tomato+Detection+Using+Deep+Learning+for+Robotics+Application&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030862299&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=27&rft.epage=38&rft_id=info:doi/10.1007%2F978-3-030-86230-5_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6721753-l.jpg