Tomato Detection Using Deep Learning for Robotics Application
The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the...
Saved in:
Published in | Progress in Artificial Intelligence Vol. 12981; pp. 27 - 38 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the needs surrounding the different processes of the different cultures. This paper compares the performance between two datasets for robotics fruit harvesting using four deep learning object detection models: YOLOv4, SSD ResNet 50, SSD Inception v2, SSD MobileNet v2. This work aims to benchmark the Open Images Dataset v6 (OIDv6) against an acquired dataset inside a tomatoes greenhouse for tomato detection in agricultural environments, using a test dataset with acquired non augmented images. The results highlight the benefit of using self-acquired datasets for the detection of tomatoes because the state-of-the-art datasets, as OIDv6, lack some relevant characteristics of the fruits in the agricultural environment, as the shape and the color. Detections in greenhouses environments differ greatly from the data inside the OIDv6, which has fewer annotations per image and the tomato is generally riped (reddish). Standing out in the use of our tomato dataset, YOLOv4 stood out with a precision of 91%. The tomato dataset was augmented and is publicly available (See https://rdm.inesctec.pt/ and https://rdm.inesctec.pt/dataset/ii-2021-001). |
---|---|
ISBN: | 9783030862299 3030862291 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-86230-5_3 |