Cross Domain Evaluation of Text Detection Models

Text detection is a very common task across a wide range of domains, such as document image analysis, remote identity verification, amongst others. It is also considered an integral component of any text recognition system, where the performance of recognition tasks largely depends on the accuracy o...

Full description

Saved in:
Bibliographic Details
Published inArtificial Neural Networks and Machine Learning - ICANN 2022 Vol. 13531; pp. 50 - 61
Main Authors Ali-Gombe, Adamu, Elyan, Eyad, Moreno-García, Carlos, Jayne, Chrisina
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Text detection is a very common task across a wide range of domains, such as document image analysis, remote identity verification, amongst others. It is also considered an integral component of any text recognition system, where the performance of recognition tasks largely depends on the accuracy of the detection of text components. Various text detection models have been developed in the past decade. However, localizing text characters is still considered as one of the most challenging computer vision tasks within the text recognition task. Typical challenges include illumination, font types and sizes, languages, and many others. Furthermore, detection models are often evaluated using specific datasets without much work on cross-datasets and domain evaluation. In this paper, we present an experimental framework to evaluate the generalization capability of state-of-the-art text detection models across different application domains. Extensive experiments were carried using different established methods: EAST, CRAFT, Tessaract and Ensembles applied to various publicly available datasets. The generalisation performance of the models was evaluated and compared using precision, recall and F1-score. This paper opens a future direction in investigating ensemble models for text detection to improve generalisation.
ISBN:3031159330
9783031159336
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-15934-3_5