A Note on the Number of General 4-holes in (Perturbed) Grids

Considering a variation of the classical Erdős-Szekeres type problems, we count the number of general 4-holes (not necessarily convex, empty 4-gons) in squared Horton sets of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usep...

Full description

Saved in:
Bibliographic Details
Published inDiscrete and Computational Geometry and Graphs Vol. 9943; pp. 1 - 12
Main Authors Aichholzer, O., Hackl, T., Valtr, P., Vogtenhuber, B.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Considering a variation of the classical Erdős-Szekeres type problems, we count the number of general 4-holes (not necessarily convex, empty 4-gons) in squared Horton sets of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}\!\times \!\sqrt{n}$$\end{document}. Improving on previous upper and lower bounds we show that this number is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n^2\log n)$$\end{document}, which constitutes the currently best upper bound on minimizing the number of general 4-holes for any set of n points in the plane. To obtain the improved bounds, we prove a result of independent interest. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{d=1}^n \frac{\varphi (d)}{d^2} = \varTheta (\log n)$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (d)$$\end{document} is Euler’s phi-function, the number of positive integers less than d which are relatively prime to d. This arithmetic function is also called Euler’s totient function and plays a role in number theory and cryptography.
Bibliography:This work is partially supported by FWF projects I648-N18 and P23629-N18, by the OEAD project CZ 18/2015, and by the project CE-ITI no. P202/12/G061 of the Czech Science Foundation GAČR, and by the project no. 7AMB15A T023 of the Ministry of Education of the Czech Republic.
ISBN:9783319485317
3319485318
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-48532-4_1