Chemokine-like factor 1, a novel cytokine, contributes to airway damage, remodeling and pulmonary fibrosis

Chemokine-like factor 1 (CKLF1) was recently identified as a novel cytokine. The full-length CKLF1 cDNA contains 530 bp encoding 99 amino acid residues with a CC motif similar to that of other CC family chemokines. Recombinant CKLF1 exhibits chemotactic activity on leucocytes and stimulates prolifer...

Full description

Saved in:
Bibliographic Details
Published inChinese medical journal Vol. 117; no. 8; pp. 1123 - 1129
Main Authors Tan, Ya-xia, Han, Wen-ling, Chen, Ying-yu, Ouyang, Neng-tai, Tang, Yan, Li, Feng, Ding, Pei-guo, Ren, Xiao-lan, Zeng, Guang-qiao, Ding, Jing, Zhu, Tong, Ma, Da-long, Zhong, Nan-shan
Format Journal Article
LanguageEnglish
Published China Department of Respiratory Diseases, First Affiliated Hospital, Peking University, Beijing 100034, China 01.08.2004
Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical College, Guangzhou 510120, China%Center for Human Disease Genomics, Peking University, Beijing 100083, China%Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical College, Guangzhou 510120, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemokine-like factor 1 (CKLF1) was recently identified as a novel cytokine. The full-length CKLF1 cDNA contains 530 bp encoding 99 amino acid residues with a CC motif similar to that of other CC family chemokines. Recombinant CKLF1 exhibits chemotactic activity on leucocytes and stimulates proliferation of murine skeletal muscle cells. We questioned whether CKLF1 could be involved in the pathogenesis of inflammation and proliferation in the lung. Therefore we used efficient in vivo gene delivery method to investigate the biological effect of CKLF1 in the murine lung. CKLF1-expressing plasmid, pCDI-CKLF1, was constructed and injected into the skeletal muscles followed by electroporation. Lung tissues were obtained at the end of week 1, 2, 3 and 4 respectively after injection. The pathological changes in the lungs were observed by light microscope. A single intramuscular injection of CKLF1 plasmid DNA into BALB/c mice caused dramatic pathological changes in the lungs of treated mice. These changes included peribronchial leukocyte infiltration, epithelial shedding, collagen deposition, proliferation of bronchial smooth muscle cells and fibrosis of the lung. The sustained morphological abnormalities of the bronchial and bronchiolar wall, the acute pneumonitis and interstitial pulmonary fibrosis induced by CKLF1 were similar to phenomena observed in chronic persistent asthma, acute respiratory distress syndrome and severe acute respiratory syndrome. These data suggest that CKLF1 may play an important role in the pathogenesis of these important diseases and the study also implies that gene electro-transfer in vivo could serve as a valuable approach for evaluating the function of a novel gene in animals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0366-6999