Time-frequency representation of epicardial electrograms during ventricular fibrillation

In the present study we quantified changes in dominant frequency, which is reciprocal of activation interval or cycle period, during ventricular fibrillation (VF). We used a Smoothed Pseudo Wigner Distribution (SPWD) to estimate time-frequency representations of epicardial electrograms recorded in s...

Full description

Saved in:
Bibliographic Details
Published inBiomedical sciences instrumentation Vol. 36; p. 45
Main Authors Moghe, S A, Qu, F, Leonelli, F M, Patwardhan, A R
Format Journal Article
LanguageEnglish
Published United States 2000
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:In the present study we quantified changes in dominant frequency, which is reciprocal of activation interval or cycle period, during ventricular fibrillation (VF). We used a Smoothed Pseudo Wigner Distribution (SPWD) to estimate time-frequency representations of epicardial electrograms recorded in swines. We used a sock with 64 electrodes spaced equally to record electrograms during 30 seconds of electrically induced VF. Results from 29 trials in three animals showed a mean dominant frequency of 6.64 Hz. We observed considerable variation in dominant frequencies during VF. Temporally, the frequencies varied by as much as +/- 1.24 Hz (2 standard deviations). Spatial variation in frequencies was +/- 1.20 Hz. Cycle periods were computed as the reciprocal of dominant frequencies obtained from the SPWD. These cycle periods were verified to be numerically similar to the cycle periods estimated using activation times detected from differentiated electrograms. Results of recent studies by others have shown that cycle periods during VF are correlated with refractory periods. Our results show that a non-stationary analysis technique such as the SPWD can be used to track spatio-temporal variation in cycle periods. These changes can be used to investigate spatio-temporal variation in cellular properties such as the effective refractory periods during VF. The substantial temporal variation in dominant frequencies that we observed suggest the possibility that the excitable gap at any epicardial location also varies considerably from one instance to another during a VF episode.
ISSN:0067-8856