Unusual polypeptide synthesis in the kinetoplast-mitochondria from Leishmania tarentolae. Identification of individual de novo translation products

The de novo synthesis of cytochrome c oxidase subunits I, II (COI and COII), and apocytochrome b (Cyb) was investigated in kinetoplast-mitochondria of Leishmania. The organelles were isolated after breaking whole cells with nitrogen cavitation. Individual COI, COII, and Cyb polypeptides were identif...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 277; no. 9; pp. 7222 - 7230
Main Authors Horváth, Anton, Nebohácova, Martina, Lukes, Julius, Maslov, Dmitri A
Format Journal Article
LanguageEnglish
Published United States 01.03.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The de novo synthesis of cytochrome c oxidase subunits I, II (COI and COII), and apocytochrome b (Cyb) was investigated in kinetoplast-mitochondria of Leishmania. The organelles were isolated after breaking whole cells with nitrogen cavitation. Individual COI, COII, and Cyb polypeptides were identified by fractionation of the kinetoplast membranes, labeled with [(35)S]methionine and cysteine, using two-dimensional (9 versus 14% and 20 versus 11%) denaturing gel electrophoresis. The reaction did not require exogenous energy sources or amino acids. On the contrary, the presence of amino acids other than methionine somewhat inhibited the labeling reaction probably by competing with the uptake of labeled amino acids. The synthesis reaction was insensitive to 100 microg/ml chloramphenicol, gentamycin, paromomycin, lincomycin, hygromycin, and tetracycline, as well as cycloheximide. The process showed a linear increase in the amount of synthesized polypeptides during the first 2 h of incubation, followed by a slower accumulation of products for up to 4 h. The de novo synthesized polypeptides were stable for several additional hours. Their assembly into respiratory complexes, investigated using two-dimensional Blue Native/N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine-SDS gels, began early during the incubation and continued throughout the course of the synthesis. This work represents the first unequivocal identification of the polypeptide synthesis in kinetoplasts.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
DOI:10.1074/jbc.M109715200