Molecular events in transmembrane signaling via E-selectin. SHP2 association, adaptor protein complex formation and ERK1/2 activation

E-selectin is a cytokine-inducible adhesion molecule that is expressed by activated endothelial cells at sites of inflammation. In addition to supporting rolling and stable arrest of leukocytes, there is increasing evidence that E-selectin functions in transmembrane signaling into endothelial cells...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 276; no. 51; pp. 48549 - 48553
Main Authors Hu, Y, Szente, B, Kiely, J M, Gimbrone, Jr, M A
Format Journal Article
LanguageEnglish
Published United States 21.12.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:E-selectin is a cytokine-inducible adhesion molecule that is expressed by activated endothelial cells at sites of inflammation. In addition to supporting rolling and stable arrest of leukocytes, there is increasing evidence that E-selectin functions in transmembrane signaling into endothelial cells during these adhesive interactions. We have previously shown that adhesion of HL-60 cells (which express ligands for E-selectin), or antibody-mediated cross-linking of E-selectin, results in formation of a Ras/Raf-1/phospho-MEK macrocomplex, extracellular signal-regulated protein kinase (ERK1/2) activation, and c-fos up-regulation. All of these downstream signaling events appear to require an intact cytoplasmic domain of E-selectin. Here we demonstrate that tyrosine 603 in the cytoplasmic domain of E-selectin is required for the E-selectin-dependent ERK1/2 activation. Tyrosine 603 plays an important role in mediating the association of E-selectin with SHP2, and the catalytic domain of SHP2 is, in turn, critical for E-selectin-dependent ERK1/2 activation. An adapter protein complex consisting of Shc.Grb2.Sos bridges between SHP2 and the Ras.Raf.phospho-MEK macrocomplex. These molecular events thus outline a mechanism by which cross-linking of E-selectin by engagement of ligands on adherent leukocytes can initiate a multifunctional signaling pathway in the activated endothelial cell at sites of inflammation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
DOI:10.1074/jbc.M105513200