Dermorphin tetrapeptide analogues with 2', 6'-dimethylphenylalanine (Dmp) substituted for aromatic amino acids have high μ opioid receptor binding and biological activities
To investigate the value of the 2',6'-dimethylphenylalanine (Dmp) residue as an aromatic amino acid substitution, we prepared analogues of the mu opioid receptor-selective dermorphin tetrapeptide Tyr-D-Arg-Phe-betaAla-NH(2) (YRFB) in which Dmp or its D-isomer replaced Tyr(1) or Phe(3). Rep...
Saved in:
Published in | Bioorganic & medicinal chemistry letters Vol. 13; no. 7; pp. 1269 - 1272 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier
07.04.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To investigate the value of the 2',6'-dimethylphenylalanine (Dmp) residue as an aromatic amino acid substitution, we prepared analogues of the mu opioid receptor-selective dermorphin tetrapeptide Tyr-D-Arg-Phe-betaAla-NH(2) (YRFB) in which Dmp or its D-isomer replaced Tyr(1) or Phe(3). Replacing Phe(3) with Dmp essentially tripled mu receptor affinity and the receptor's in vitro biological activities as determined with the guinea pig ileum (GPI) assay but did not change delta receptor affinity. Despite an inversion of the D configuration at this position, mu receptor affinity and selectivity remained comparable with those of the L-isomer. Replacing the N-terminal Tyr residue with Dmp produced a slightly improved mu receptor affinity and a potent GPI activity, even though the substituted compound lacks the side chain phenolic hydroxyl group at the N-terminal residue. Dual substitution of Dmp for Tyr(1) and Phe(3) produced significantly improved mu receptor affinity and selectivity compared with the singly substituted analogues. Subcutaneous injection of the two analogues, [Dmp(3)]YRFB and [Dmp(1)]YRFB, in mice produced potent analgesic activities that were greater than morphine in the formalin test. These lines of evidence suggest that the Dmp residue would be an effective aromatic amino acid surrogate for both Tyr and Phe in the design and development of novel opioid mimetics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0960-894X 1464-3405 |
DOI: | 10.1016/S0960-894X(03)00110-0 |