Hammerhead ribozymes reduce central nervous system (CNS)-derived neuronal nitric oxide synthase messenger RNA in a human cell line

Catalytic RNA molecules (ribozymes) have been widely used specifically to suppress gene expression. Neuronal nitric oxide synthase (nNOS) is an important molecule involved in normal central nervous system function (e.g. vasodilation, neurotransmission.) and disease (e.g. oxidative stress). This repo...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience letters Vol. 329; no. 1; pp. 81 - 85
Main Authors MANIOTIS, D, WOOD, M. J. A, PHYLACTOU, L. A
Format Journal Article
LanguageEnglish
Published Shannon Elsevier 23.08.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Catalytic RNA molecules (ribozymes) have been widely used specifically to suppress gene expression. Neuronal nitric oxide synthase (nNOS) is an important molecule involved in normal central nervous system function (e.g. vasodilation, neurotransmission.) and disease (e.g. oxidative stress). This report is an investigation of the hammerhead ribozyme function and potential in the central nervous system using nNOS as a model. Two antisense hammerhead ribozymes, nNOS-RZ1 and nNOS-RZ2, were designed and constructed against nNOS messenger RNA (mRNA). In vitro (cell-free) experiments demonstrated the ability of both ribozymes to cleave nNOS RNA targets. Ribozyme-mediated reduction of the endogenous nNOS mRNA in human TGW-I-nu neuroblastoma cells was demonstrated by plasmid- and adenovirus-mediated transfections. These results may form the basis for studying neuronal gene expression and for designing RNA-directed therapeutic strategies for neurological diseases that involve oxidative stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3940
1872-7972
DOI:10.1016/S0304-3940(02)00582-7