Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation: Attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin

Increased vascular superoxide anion (O(2)(-)) formation is essentially involved in the pathophysiology of atherosclerosis. Chronic hyperglycemia induces endothelial dysfunction, probably due to increased formation of reactive oxygen intermediates. However, little is known about the localization, mod...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 51; no. 8; pp. 2648 - 2652
Main Authors CHRIST, Michael, BAUERSACHS, Johann, LIEBETRAU, Claudia, HECK, Marina, GÜNTHER, Andreas, WEHLING, Martin
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.08.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increased vascular superoxide anion (O(2)(-)) formation is essentially involved in the pathophysiology of atherosclerosis. Chronic hyperglycemia induces endothelial dysfunction, probably due to increased formation of reactive oxygen intermediates. However, little is known about the localization, modulators, and molecular mechanisms of vascular O(2)(-) formation during hyperglycemia. In porcine coronary segments, high glucose significantly increased O(2)(-) formation (1,703.5 +/- 394.9 vs. 834.1 +/- 91.7 units/mg for control, n = 64, P < 0.05; measured by lucigenin-enhanced chemiluminescence). This effect was completely blocked after removal of the endothelium. Coincubation with 10 micromol/l atorvastatin, a lipophilic inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, attenuated basal and glucose-induced O(2)(-) formation (328.1 +/- 46.5 and 332.8 +/- 50.3 units/mg, P < 0.05 vs. without atorvastatin). Incubation with mevalonic acid reversed this effect. High glucose increased mRNA expression of the oxidase subunit p22(phox), which was blocked by 10 micromol/l atorvastatin, whereas expression of gp91(phox) was unchanged. In conclusion, glucose-induced increase of vascular O(2)(-) formation is endothelium dependent and is probably mediated by increased p22(phox) subunit expression. Beneficial effects of statins in diabetic patients may be explained in part by attenuation of vascular O(2)(-) formation independent of lipid lowering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0012-1797
1939-327X
DOI:10.2337/diabetes.51.8.2648