Sources of error in noninvasive pulmonary blood flow measurements by Partial rebreathing: A computer model study

Partial rebreathing is a noninvasive method for measuring pulmonary blood flow (PBF). This study examines the systematic errors produced by the partial rebreathing technique utilizing a comprehensive mathematical model of the cardiorespiratory system of a healthy, 70-kg adult male. The model simulat...

Full description

Saved in:
Bibliographic Details
Published inAnesthesiology (Philadelphia) Vol. 98; no. 4; pp. 881 - 887
Main Authors YEM, Johnny S, YONGQUAN TANG, TURNER, Martin J, BAKER, A. Barry
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott 01.04.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Partial rebreathing is a noninvasive method for measuring pulmonary blood flow (PBF). This study examines the systematic errors produced by the partial rebreathing technique utilizing a comprehensive mathematical model of the cardiorespiratory system of a healthy, 70-kg adult male. The model simulates tidal breathing through a branched respiratory tree and incorporates the effects on carbon dioxide dynamics of lung tissue mass, vascular transport delays, multiple body compartments, and realistic blood-gas dissociation curves. Four studies were performed: (1) errors produced under standard conditions, (2) effects of recirculation, (3) effects of alveolar-proximal airway partial pressure of carbon dioxide (Pco(2)) differences, and (4) effects of rebreathing time. Systematic errors are less than 10% when the simulated PBF is between 3 and 6 l/min. At 2 l/min, PBF is overestimated by approximately 35%. At 14 l/min, PBF is underestimated by approximately 40%. At PBF of greater than 6 l/min, recirculation causes approximately 60% of the systematic error, alveolar-proximal airway differences cause approximately 20%, and alveolar-arterial differences cause approximately 20%. The standard rebreathing time of 50 s is shown to be excessive for PBF of greater than 6 l/min. At PBF of less than 3 l/min, errors are caused by inadequate rebreathing time and alveolar-arterial gradients. Systematic errors in partial rebreathing cardiac output measurements have multiple causes. Our simulations suggest that errors can be reduced by using a variable rebreathing time, which should be increased at low PBF so that quasi-equilibrium in the alveoli can be achieved and decreased at high PBF to reduce the effects of recirculation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-3022
1528-1175
DOI:10.1097/00000542-200304000-00014