Molecular organization and antiproliferative domains of arterial tissue heparan sulfate

Heparan sulfate isolated from mammalian arterial tissue inhibits the growth of homologous arterial smooth muscle cells when added to subconfluent cell cultures at a concentration of 50 to 100 micrograms/ml culture medium. Disintegration of the heparan sulfate molecule by hydrazinolysis that deacetyl...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of cell biology Vol. 59; no. 2; p. 322
Main Authors Schmidt, A, Lemming, G, Yoshida, K, Buddecke, E
Format Journal Article
LanguageEnglish
Published Germany 01.12.1992
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Heparan sulfate isolated from mammalian arterial tissue inhibits the growth of homologous arterial smooth muscle cells when added to subconfluent cell cultures at a concentration of 50 to 100 micrograms/ml culture medium. Disintegration of the heparan sulfate molecule by hydrazinolysis that deacetylates N-acetylglucosaminyl residues and by subsequent treatment with nitrous acid at pH 3.9 results in the formation of a mixture of oligosaccharides which was further resolved into sulfate-enriched oligosaccharides with antiproliferative activity in an in vitro bioassay system. A decasaccharide and dodeca/tetradecasaccharide fraction had a significantly higher antiproliferative effect on arterial smooth muscle cells than the native heparan sulfate molecule. The antiproliferative oligosaccharides have a sulfate content of 0.9 to 1.2 sulfate groups/disaccharide unit and consist of 60 to 70% monosulfated, disulfated, and trisulfated disaccharide units. Up to 32% of the sulfate groups were in 2-position of the uronic acid. In contrast, nitrous acid degradation of heparan sulfate at pH 1.5, which cleaves glycosidic linkages of N-sulfoglucosaminyl residues, results in the formation of sulfate-poor or sulfate-free oligosaccharides without antiproliferative potency. The results indicate that (a) heparan sulfate has a heterogeneous molecular organization where sulfate-rich domains are separated by sulfate-poor sequences and that (b) the antiproliferative activity of heparan sulfate resides in domains enriched with 2-O-sulfated uronic acid residues.
ISSN:0171-9335