Comparison and harmonization of measuring methods for air contaminants in the working environment
The objective of this work was to demonstrate that the measurement of air contaminants in the workplace requires a special approach. Decisive in carrying out the measuring task is the quality of the sampling strategy, including selection of the appropriate measuring method. Methods developed at a na...
Saved in:
Published in | International archives of occupational and environmental health Vol. 71; pp. S55 - S59 |
---|---|
Main Author | |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
Berlin
Springer
01.09.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective of this work was to demonstrate that the measurement of air contaminants in the workplace requires a special approach. Decisive in carrying out the measuring task is the quality of the sampling strategy, including selection of the appropriate measuring method. Methods developed at a national level may be more suitable for this purpose than methods described in international standards. Measurements of air contaminants in the workplace should always be the basis for the prevention and control of occupational hazards. Such measurements, therefore, are also an essential element of risk assessment. Industrial processes and chemical agents are myriad. Each manufacturing stage may apply different conditions (e.g., batch production or continuous process, temperature, pressure) and agents (e.g. a wide variety of chemical substances): In each of these stages, different job functions may be necessary and may be subject to different exposure conditions. Distance from emission sources and physical parameters, such as rates of release, air current, meteorological variations, also have a profound influence. The measuring task in the workplace is quite different in comparison to many others (e.g., blood or soil sample analysis). Firstly, the selection of sampling time and sampling location are crucial steps in air analysis. Transportation and storage of the samples, may however, also influence measuring results; interlaboratory tests show the existing problems. Generally, in analytics, the substance to be determined remains "well covered" in its matrix during sampling, transportation and storage. In air analysis, however, the contaminant is usually "torn" from its surrounding matrix (the air) and "forced" into the sorbent, where it finds a completely new environment; reactions yielding artefacts may take place. Several international organizations have issued guidelines and standards on measuring methods for air contaminants in the working environment, such as the World Health Organization (WHO), the International Union of Pure and Applied Chemistry (IUPAC), and the International Organization for Standardization (ISO). Most of these international documents are substance-related and mainly cover the analytical steps, which constitute only part of the whole measuring process. The approach of the Commission of the European Union is useful in solving the task of air testing in the workplace. This body has issued an EU Directive which includes general requirements for measuring methods. In the Directive it is also stated that persons who carry out measurements must possess the necessary expertise. The Directive, in addition, refers to the European Committee for Standardization (CEN), and that to general requirements for measuring procedures. The advantage of the EU/CEN approach is its aspect of general requirements. This allows the development of new or improved methods without any restricting effect on existing substance-related standards. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0340-0131 |