Na2Ba[Na2Sn2S7]: Structural Tolerance Factor‐Guided NLO Performance Improvement

The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second‐order harmonic generation (SHG), leads to the extreme scarcity in high‐performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2Ba[(AgxNa1−x)2Sn2S7...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 7
Main Authors Li, Rui‐An, Liu, Qian‐Qian, Liu, Xin, Liu, Youquan, Jiang, Xingxing, Lin, Zheshuai, Jia, Fei, Xiong, Lin, Chen, Ling, Wu, Li‐Ming
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.02.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second‐order harmonic generation (SHG), leads to the extreme scarcity in high‐performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2Ba[(AgxNa1−x)2Sn2S7] (1, x=0; 1 series, x=0.1–0.6; Na2Ba[(Li0.58Na0.42)2Sn2S7], 1‐0.6Li); Na2Sr[Cu2Sn2S7] (2); and Na2Ba[Cu2Sn2S7] (3). We use the structural tolerance factor ( tIexp ${{t}_{I}^{exp}}$ ) to connect the chemical composition, crystal structure, and NLO properties. Guided by these correlations, a better balance between Eg and SHG is realized in 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser‐induced damage threshold: 12×AGS), representing the best performance among the known Hg‐ or As‐free sulfides to date. Guided by the relationships between the structural tolerance factor and the dopant concentration and second‐order susceptibility, a better balance between Eg and SHG is realized in Na2Ba [Na2Sn2S7] 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser‐induced damage threshold: 12×AGS), representing the best performance among the known Hg‐ or As‐free sulfides to date.
AbstractList The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second‐order harmonic generation (SHG), leads to the extreme scarcity in high‐performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2Ba[(AgxNa1−x)2Sn2S7] (1, x=0; 1 series, x=0.1–0.6; Na2Ba[(Li0.58Na0.42)2Sn2S7], 1‐0.6Li); Na2Sr[Cu2Sn2S7] (2); and Na2Ba[Cu2Sn2S7] (3). We use the structural tolerance factor (tIexp${{t}_{I}^{exp}}$) to connect the chemical composition, crystal structure, and NLO properties. Guided by these correlations, a better balance between Eg and SHG is realized in 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser‐induced damage threshold: 12×AGS), representing the best performance among the known Hg‐ or As‐free sulfides to date.
The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second‐order harmonic generation (SHG), leads to the extreme scarcity in high‐performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2Ba[(AgxNa1−x)2Sn2S7] (1, x=0; 1 series, x=0.1–0.6; Na2Ba[(Li0.58Na0.42)2Sn2S7], 1‐0.6Li); Na2Sr[Cu2Sn2S7] (2); and Na2Ba[Cu2Sn2S7] (3). We use the structural tolerance factor ( tIexp ${{t}_{I}^{exp}}$ ) to connect the chemical composition, crystal structure, and NLO properties. Guided by these correlations, a better balance between Eg and SHG is realized in 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser‐induced damage threshold: 12×AGS), representing the best performance among the known Hg‐ or As‐free sulfides to date. Guided by the relationships between the structural tolerance factor and the dopant concentration and second‐order susceptibility, a better balance between Eg and SHG is realized in Na2Ba [Na2Sn2S7] 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser‐induced damage threshold: 12×AGS), representing the best performance among the known Hg‐ or As‐free sulfides to date.
Author Lin, Zheshuai
Jia, Fei
Li, Rui‐An
Wu, Li‐Ming
Xiong, Lin
Liu, Youquan
Liu, Qian‐Qian
Liu, Xin
Jiang, Xingxing
Chen, Ling
Author_xml – sequence: 1
  givenname: Rui‐An
  surname: Li
  fullname: Li, Rui‐An
  organization: Beijing Normal University
– sequence: 2
  givenname: Qian‐Qian
  surname: Liu
  fullname: Liu, Qian‐Qian
  organization: Beijing Normal University
– sequence: 3
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Beijing Normal University
– sequence: 4
  givenname: Youquan
  surname: Liu
  fullname: Liu, Youquan
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Xingxing
  surname: Jiang
  fullname: Jiang, Xingxing
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Zheshuai
  surname: Lin
  fullname: Lin, Zheshuai
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Fei
  surname: Jia
  fullname: Jia, Fei
  organization: Beijing Normal University
– sequence: 8
  givenname: Lin
  surname: Xiong
  fullname: Xiong, Lin
  organization: Beijing Normal University
– sequence: 9
  givenname: Ling
  orcidid: 0000-0002-3693-4193
  surname: Chen
  fullname: Chen, Ling
  email: chenl@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 10
  givenname: Li‐Ming
  surname: Wu
  fullname: Wu, Li‐Ming
  email: wlm@bnu.edu.cn
  organization: Beijing Normal University
BookMark eNo9UE1PwkAU3BhMBPTquYnn4n60u4s3JIAkDWjAkzGbZfualLRb3LYYbv4Ef6O_xEUMl_dm8iZvJtNDHVtZQOiW4AHBmN5rm8OAYkqJxJG8QF0SUxIyIVjH44ixUMiYXKFeXW-9XkrMu-hloemjfvNzZelKvD8Eq8a1pmmdLoJ1VYDT1kAw1aap3M_X96zNU0iDRbIMnsFllSv_7vNy56o9lGCba3SZ6aKGm__dR6_TyXr8FCbL2Xw8SsIdZUyGG2HAZzOpiAFnmksO3GyyKGYpwFAaHm8iT42OJPOYEww-M8lkKoeEpZT10d3pr3f-aKFu1LZqnfWWigpBJJWUH1XDk-ozL-Cgdi4vtTsogtWxM3XsTJ07U6PFfHJm7BelLWRN
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID 7TM
K9.
DOI 10.1002/anie.202218048
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202218048
Genre article
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 22193043
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
ID FETCH-LOGICAL-p2338-b7ce377cd75e0fa686e6cbf453dee98c65b4bf4ca48365b610e0281f8d8913d23
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Sun Jul 13 04:19:34 EDT 2025
Wed Jan 22 16:17:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2338-b7ce377cd75e0fa686e6cbf453dee98c65b4bf4ca48365b610e0281f8d8913d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3693-4193
PQID 2771828262
PQPubID 946352
PageCount 6
ParticipantIDs proquest_journals_2771828262
wiley_primary_10_1002_anie_202218048_ANIE202218048
PublicationCentury 2000
PublicationDate February 6, 2023
PublicationDateYYYYMMDD 2023-02-06
PublicationDate_xml – month: 02
  year: 2023
  text: February 6, 2023
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2019; 7
1987; 36
2017; 7
2007; 244
2017; 2
2021; 23
2018; 140
2020; 20
2020 2020; 59 132
2019; 269
2014; 26
2020; 56
2017; 29
2021; 143
2020; 32
2018; 21
2020; 406
1996; 54
2018; 47
2017; 139
2022; 144
2022; 122
2022 2022; 61 134
2018; 3
2015; 27
2021; 33
1968; 39
2022; 4
2020; 30
1999; 59
2021 2021; 60 133
2018; 30
2016; 138
2008; 20
2012; 136
1994; 50
2016; 22
2012; 9
References_xml – volume: 26
  start-page: 849
  year: 2014
  end-page: 869
  publication-title: Chem. Mater.
– volume: 2
  start-page: 29
  year: 2017
  end-page: 35
  publication-title: ACS Energy Lett.
– volume: 47
  start-page: 429
  year: 2018
  end-page: 437
  publication-title: Dalton Trans.
– volume: 21
  start-page: 611
  year: 2018
  end-page: 630
  publication-title: Mater. Today
– volume: 32
  start-page: 10045
  year: 2020
  end-page: 10054
  publication-title: Chem. Mater.
– volume: 8
  start-page: 2835
  year: 2021
  end-page: 2843
  publication-title: Inorg. Chem. Front.
– volume: 30
  start-page: 602
  year: 2018
  end-page: 606
  publication-title: Chem. Mater.
– volume: 144
  start-page: 21916
  year: 2022
  end-page: 21925
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 24131 24333
  year: 2021 2021
  end-page: 24136 24338
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 1025
  year: 2021
  end-page: 1032
  publication-title: CrystEngComm
– volume: 136
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 605
  year: 2020
  end-page: 610
  publication-title: Chem. Mater.
– volume: 138
  start-page: 6135
  year: 2016
  end-page: 6138
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 7993
  year: 2017
  end-page: 8002
  publication-title: Chem. Mater.
– volume: 20
  start-page: 8084
  year: 2020
  end-page: 8089
  publication-title: Cryst. Growth Des.
– volume: 3
  start-page: 760
  year: 2018
  end-page: 766
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 2271
  year: 2012
  end-page: 2274
  publication-title: Phys. Status Solidi C
– volume: 406
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 4638
  year: 2019
  end-page: 4643
  publication-title: J. Mater. Chem. C
– volume: 244
  start-page: 1337
  year: 2007
  end-page: 1346
  publication-title: Phys. Status Solidi B
– volume: 20
  start-page: 2439
  year: 2008
  end-page: 2443
  publication-title: Adv. Mater.
– volume: 29
  start-page: 499
  year: 2017
  end-page: 503
  publication-title: Chem. Mater.
– volume: 122
  start-page: 10170
  year: 2022
  end-page: 10265
  publication-title: Chem. Rev.
– volume: 32
  start-page: 1636
  year: 2020
  end-page: 1649
  publication-title: Chem. Mater.
– volume: 140
  start-page: 15690
  year: 2018
  end-page: 15700
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 11861 11959
  year: 2020 2020
  end-page: 11865 11963
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 143
  start-page: 18204
  year: 2021
  end-page: 18215
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 507
  year: 2016
  end-page: 513
  publication-title: Nano Energy
– volume: 36
  start-page: 6497
  year: 1987
  end-page: 6500
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 4225
  year: 2021
  end-page: 4230
  publication-title: Chem. Mater.
– volume: 29
  start-page: 5259
  year: 2017
  end-page: 5266
  publication-title: Chem. Mater.
– volume: 39
  start-page: 3798
  year: 1968
  end-page: 3813
  publication-title: J. Appl. Phys.
– volume: 27
  start-page: 1316
  year: 2015
  end-page: 1326
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1264
  year: 2022
  end-page: 1269
  publication-title: ACS Mater. Lett.
– volume: 269
  start-page: 225
  year: 2019
  end-page: 232
  publication-title: J. Solid State Chem.
– volume: 139
  start-page: 14885
  year: 2017
  end-page: 14888
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 29378
  year: 2017
  end-page: 29385
  publication-title: RSC Adv.
– volume: 56
  start-page: 11565
  year: 2020
  end-page: 11576
  publication-title: Chem. Commun.
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 1281
  year: 2020
  end-page: 1287
  publication-title: Chem. Mater.
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 10668
  year: 2021
  end-page: 10675
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2330
  year: 2021
  end-page: 2334
  publication-title: Mater. Horiz.
SSID ssj0028806
Score 2.5701869
Snippet The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second‐order harmonic generation (SHG), leads...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Chalcogenides
Chemical composition
Crystal structure
Harmonic generations
Laser damage
Mutual coupling
Nonlinear Optics
Second-Harmonic Generation
Structural Tolerance Factors
Sulfides
Yield point
Title Na2Ba[Na2Sn2S7]: Structural Tolerance Factor‐Guided NLO Performance Improvement
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218048
https://www.proquest.com/docview/2771828262
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6yi178LU6n5OC1W5u2SeZtjs0pWn9sg4FIaZoEROkGbhdP_gn-jf4lvqRrt3nUSyHQQPrxkve99L3vIXTWbGrKPK0dzkPXCZh2HS4FdVLPhfepl1Jq6p1vI9obBtejcLRUxZ_rQ5QXbmZn2PPabPBEvDcWoqGmAhviOwI-CqwQDmGTsGVY0WOpH0XAOPPyIt93TBf6QrXRJY3V6Sv8cpmlWjfT3UJJscA8u-S1PpuKevrxS7vxP1-wjTbnHBS3cqPZQWsq20Xr7aL12x56iBJykTzBs5-RPns-x30rM2skOvBg_KZMNw6Fu7ZXz_fn1-XsRSqJo5s7fL8oRMD5hYW9f9xHw25n0O45894LzoRA1OoIliqfsVSyULk6oZwqmgodhL5UqslTGooAhkYTHWAXQMIUwO1pLs1_T0n8A1TJxpk6RDiAUyPwmsKXXARAUHiYak-ExE2YL8KEVVGtwD6eb6D3mDBwmhAOUlJFxIIYT3L5jTgXWiaxgS8u4Ytb0VWnHB39ZdIx2jDN5G1ONq2hCiCrToByTMWpNasfJHLOJQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHvDi24ii9uC10G67u603JCAo1AeQmBjTdLvbxGgKiXDx5E_wN_pLnN3SIh710nSTbtJOZnYenfk-hM58P6HMThLT84hluiyxTE9wasa2Bc9TO6ZUzTv3A9oZuVcPJO8mVLMwGT5EUXBTlqHPa2XgqiBdX6CGqhFsSPAwOClQw1W0pmi9dVZ1XyBIYVDPbMDIcUzFQ5_jNlq4vrx_KcL8GadqR9PeRDx_xay_5KU2m_Ja_P4LvfFf37CFNuZhqNHI9GYbrch0B5WbOfvbLroLInwRPcJ1kOIBezo3BhppVqF0GMPxq1SEHNJoa7qer4_Py9mzkMIIejfG7WIWwchqFroEuYdG7daw2THn9AvmBEPianIWS4exWDAirSSiHpU05olLHCGl78WUcBeWChbdgXuIwyTI2048oX59Cuzso1I6TuUBMlw4OFzb547wuAsxikfixOYEWxFzOIlYBVVz4YdzG3oLMQO_CRkhxRWEtRTDSYbAEWZYyzhU4gsL8YWNoNsqVod_2XSKyp1hvxf2usH1EVpX3PK6RZtWUQmkLI8hApnyE61j3x_v0kA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSMCFHVEokAPXtImT2A630oUWSii0lSohFMWxLSFQW4n2wolP4Bv5EsZJ04UjXKJYiqXkacYz43jeQ-jC9xWhtlImY55lulRZJhOcmLFtwfPEjgnR_c53AWn03Ju-11_o4k_5IWYbbtozkvVaO_hIqNKcNFR3YEN9hyFGgRWuojWXWEzbdfVxRiCFwTrT_iLHMbUMfUbbaOHS8vylBHMxTU3iTH0bRdkbpsdLXouTMS_GH7_IG__zCTtoa5qEGuXUanbRihzsoY1Kpv22jx6CCF9FT3DtDHCHPl8anYRnVnN0GN3hm9RyHNKoJ2I9359f15MXIYURtO6N9rwTwUh3LJINyAPUq9e6lYY5FV8wRxjKVpPTWDqUxoJ60lIRYUSSmCvXc4SUPouJx10YalJ0B-4hC5MAt62Y0D8-BXYOUW4wHMgjZLiwbLi2zx3BuAsZCvNiZXMPWxF1uBfRPCpk2IdTD3oPMYWoCfUgwXmEExDDUcq_EaZMyzjU8IUz-MJy0KzNRsd_mXSO1tvVethqBrcnaFMLyyfns0kB5QBkeQrpx5ifJRb2A-Cq0Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Na2Ba%5BNa2Sn2S7%5D%3A+Structural+Tolerance+Factor%E2%80%90Guided+NLO+Performance+Improvement&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Rui%E2%80%90An&rft.au=Liu%2C+Qian%E2%80%90Qian&rft.au=Liu%2C+Xin&rft.au=Liu%2C+Youquan&rft.date=2023-02-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202218048&rft.externalDBID=10.1002%252Fanie.202218048&rft.externalDocID=ANIE202218048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon