Na2Ba[Na2Sn2S7]: Structural Tolerance Factor‐Guided NLO Performance Improvement

The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second‐order harmonic generation (SHG), leads to the extreme scarcity in high‐performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2Ba[(AgxNa1−x)2Sn2S7...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 7
Main Authors Li, Rui‐An, Liu, Qian‐Qian, Liu, Xin, Liu, Youquan, Jiang, Xingxing, Lin, Zheshuai, Jia, Fei, Xiong, Lin, Chen, Ling, Wu, Li‐Ming
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.02.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second‐order harmonic generation (SHG), leads to the extreme scarcity in high‐performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2Ba[(AgxNa1−x)2Sn2S7] (1, x=0; 1 series, x=0.1–0.6; Na2Ba[(Li0.58Na0.42)2Sn2S7], 1‐0.6Li); Na2Sr[Cu2Sn2S7] (2); and Na2Ba[Cu2Sn2S7] (3). We use the structural tolerance factor ( tIexp ${{t}_{I}^{exp}}$ ) to connect the chemical composition, crystal structure, and NLO properties. Guided by these correlations, a better balance between Eg and SHG is realized in 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser‐induced damage threshold: 12×AGS), representing the best performance among the known Hg‐ or As‐free sulfides to date. Guided by the relationships between the structural tolerance factor and the dopant concentration and second‐order susceptibility, a better balance between Eg and SHG is realized in Na2Ba [Na2Sn2S7] 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser‐induced damage threshold: 12×AGS), representing the best performance among the known Hg‐ or As‐free sulfides to date.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202218048