Characterization and Recognition of Generalized Clique-Helly Graphs

Let p ≥ 1 and q ≥ 0 be integers. A family of sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal F}$\end{doc...

Full description

Saved in:
Bibliographic Details
Published inGraph-Theoretic Concepts in Computer Science pp. 344 - 354
Main Authors Dourado, Mitre Costa, Protti, Fábio, Szwarcfiter, Jayme Luiz
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2004
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let p ≥ 1 and q ≥ 0 be integers. A family of sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal F}$\end{document} is (p,q)-intersecting when every subfamily \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal F}' \subseteq {\mathcal F}$\end{document} formed by p or less members has total intersection of cardinality at least q. A family of sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal F}$\end{document} is (p,q)-Helly when every (p,q)-intersecting subfamily \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal F}' \subseteq {\mathcal F}$\end{document} has total intersection of cardinality at least q. A graph G is a (p,q)-clique-Helly graph when its family of (maximal) cliques is (p,q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p=2, q=1. In this work we present a characterization for (p,q)-clique-Helly graphs. For fixed p,q, this characterization leads to a polynomial-time recognition algorithm. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard.
ISBN:9783540241324
3540241329
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-30559-0_29