Characterization and Recognition of Generalized Clique-Helly Graphs
Let p ≥ 1 and q ≥ 0 be integers. A family of sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal F}$\end{doc...
Saved in:
Published in | Graph-Theoretic Concepts in Computer Science pp. 344 - 354 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let p ≥ 1 and q ≥ 0 be integers. A family of sets \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal F}$\end{document} is (p,q)-intersecting when every subfamily \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal F}' \subseteq {\mathcal F}$\end{document} formed by p or less members has total intersection of cardinality at least q. A family of sets \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal F}$\end{document} is (p,q)-Helly when every (p,q)-intersecting subfamily \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal F}' \subseteq {\mathcal F}$\end{document} has total intersection of cardinality at least q. A graph G is a (p,q)-clique-Helly graph when its family of (maximal) cliques is (p,q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p=2, q=1. In this work we present a characterization for (p,q)-clique-Helly graphs. For fixed p,q, this characterization leads to a polynomial-time recognition algorithm. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard. |
---|---|
ISBN: | 9783540241324 3540241329 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-30559-0_29 |