H-matrix approximability of inverses of discretizations of the fractional Laplacian

The integral version of the fractional Laplacian on a bounded domain is discretized by a Galerkin approximation based on piecewise linear functions on a quasiuniform mesh. We show that the inverse of the associated stiffness matrix can be approximated by blockwise low-rank matrices at an exponential...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 45; no. 5-6; pp. 2893 - 2919
Main Authors Karkulik, Michael, Melenk, Jens Markus
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The integral version of the fractional Laplacian on a bounded domain is discretized by a Galerkin approximation based on piecewise linear functions on a quasiuniform mesh. We show that the inverse of the associated stiffness matrix can be approximated by blockwise low-rank matrices at an exponential rate in the block rank.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-019-09718-5