Intrusion Detection Based on ART and Artificial Immune Network Clustering
Intrusion Detection based on Adaptive Resonance Theory and Artificial Immune Network Clustering (ID-ARTAINC) is proposed in this paper. First the mass data for intrusion detection are pretreated by Adaptive Resonance Theory (ART) network to form glancing description of the data and to get vaccine. T...
Saved in:
Published in | Advances in Natural Computation pp. 780 - 783 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783540283256 3540283250 3540283234 9783540283232 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/11539117_109 |
Cover
Loading…
Summary: | Intrusion Detection based on Adaptive Resonance Theory and Artificial Immune Network Clustering (ID-ARTAINC) is proposed in this paper. First the mass data for intrusion detection are pretreated by Adaptive Resonance Theory (ART) network to form glancing description of the data and to get vaccine. The outputs of ART network are considered as initial antibodies to train an Immune Network, Last Minimal Spanning Tree is employed to perform clustering analysis and obtain characterization of normal data and abnormal data. ID-ARTAINC can deal with mass unlabeled data to distinguish between normal and anomaly and to detect unknown attacks. The computer simulations on the KDD CUP99 dataset show that ID-ARTAINC achieves higher detection rate and lower false positive rate. |
---|---|
ISBN: | 9783540283256 3540283250 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539117_109 |