A Multi-cluster Grid Enabled Evolution Framework for Aerodynamic Airfoil Design Optimization
Advances in grid computing have recently sparkled the research and development of Grid problem solving environments for complex design. Parallelism in the form of distributed computing is a growing trend, particularly so in the optimization of high-fidelity computationally expensive design problems...
Saved in:
Published in | Advances in Natural Computation pp. 1112 - 1121 |
---|---|
Main Authors | , , , , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Advances in grid computing have recently sparkled the research and development of Grid problem solving environments for complex design. Parallelism in the form of distributed computing is a growing trend, particularly so in the optimization of high-fidelity computationally expensive design problems in science and engineering. In this paper, we present a powerful and inexpensive grid enabled evolution framework for facilitating parallelism in hierarchical parallel evolutionary algorithms. By exploiting the grid evolution framework and a multi-level parallelization strategy of hierarchical parallel GAs, we present the evolutionary optimization of a realistic 2D aerodynamic airfoil structure. Further, we study the utility of hierarchical parallel GAs on two potential grid enabled evolution frameworks and analysis how it fares on a grid environment with multiple heterogeneous clusters, i.e., clusters with differing specifications and processing nodes. From the results, it is possible to conclude that a grid enabled hierarchical parallel evolutionary algorithm is not mere hype but offers a credible alternative, providing significant speed-up to complex engineering design optimization. |
---|---|
ISBN: | 9783540283256 3540283250 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539117_151 |