Cluster-Based Self-organizing Neuro-fuzzy System with Hybrid Learning Approach for Function Approximation

A novel hybrid cluster-based self-organizing neuro-fuzzy system (HC-SONFS) is proposed for dynamic function approximation and prediction. With the mechanism of self-organization, fuzzy rules are generated in the form of clusters using the proposed self-organization method to achieve compact and suff...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Natural Computation pp. 1186 - 1189
Main Authors Li, Chunshien, Cheng, Kuo-Hsiang, Chen, Chih-Ming, Chen, Jin-Long
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel hybrid cluster-based self-organizing neuro-fuzzy system (HC-SONFS) is proposed for dynamic function approximation and prediction. With the mechanism of self-organization, fuzzy rules are generated in the form of clusters using the proposed self-organization method to achieve compact and sufficient system structure if the current structure of knowledge base is insufficient to satisfy the required performance. A hybrid learning algorithm combining the well-known random optimization (RO) and the least square estimation (LSE) is use for fast learning. An example of chaos time series for system identification and prediction is illustrated. Compared to other approaches, excellent performance of the proposed HC-SONFS is observed.
ISBN:9783540283201
354028320X
3540283234
9783540283232
ISSN:0302-9743
1611-3349
DOI:10.1007/11539902_150