An Effective Multi-level Algorithm for Bisecting Graph
Clustering is an important approach to graph partitioning. In this process a graph model expressed as the pairwise similarities between all data objects is represented as a weighted graph adjacency matrix. The min-cut bipartitioning problem is a fundamental graph partitioning problem and is NP-Compl...
Saved in:
Published in | Advanced Data Mining and Applications pp. 493 - 500 |
---|---|
Main Authors | , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2006
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Clustering is an important approach to graph partitioning. In this process a graph model expressed as the pairwise similarities between all data objects is represented as a weighted graph adjacency matrix. The min-cut bipartitioning problem is a fundamental graph partitioning problem and is NP-Complete. In this paper, we present an effective multi-level algorithm for bisecting graph. The success of our algorithm relies on exploiting both Tabu search theory and the concept of the graph core. Our experimental evaluations on 18 different graphs show that our algorithm produces excellent solutions compared with those produced by MeTiS that is a state-of-the-art partitioner in the literature. |
---|---|
ISBN: | 3540370250 9783540370253 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11811305_54 |