Neural Network Based Feedback Scheduler for Networked Control System with Flexible Workload
Most control applications closed over a shared network are suffering from the time-varying characteristics of flexible network workload. This gives rise to non-deterministic availability of communication resources and may significantly impact the control performance. In the context of integrating co...
Saved in:
Published in | Advances in Natural Computation pp. 242 - 251 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Most control applications closed over a shared network are suffering from the time-varying characteristics of flexible network workload. This gives rise to non-deterministic availability of communication resources and may significantly impact the control performance. In the context of integrating control and scheduling, a novel feedback scheduler based on neural networks is suggested. With a modular architecture, the proposed feedback scheduler mainly consists of a monitor, a predictor, a regulator and an actuator. An online learning Elman neural network is employed to predict the network conditions, and then the control period is dynamically adjusted in response to estimated available network utilization. A fast algorithm for period regulation is employed. Preliminary simulation results show that the proposed feedback scheduler is effective in managing workload variations and can provide runtime flexibility to networked control applications. |
---|---|
ISBN: | 9783540283256 3540283250 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539117_36 |