A BP Neural Network Predictor Model for Desulfurizing Molten Iron

Desulfurization of molten iron is one of the stages of steel production process. A back-propagation (BP) artificial neural network (ANN) model is developed to predict the operation parameters for desulfurization process in this paper. The primary objective of the BP neural network predictor model is...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Data Mining and Applications pp. 728 - 735
Main Authors Rong, Zhijun, Dan, Binbin, Yi, Jiangang
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Desulfurization of molten iron is one of the stages of steel production process. A back-propagation (BP) artificial neural network (ANN) model is developed to predict the operation parameters for desulfurization process in this paper. The primary objective of the BP neural network predictor model is to assign the operation parameters on the basis of intelligent algorithm instead of the experience of operators. This paper presents a mathematical model and development methodology for predicting the three main operation parameters and optimizing the consumption of desulfurizer. Furthermore, a software package is developed based on this BP ANN predictor model. Finally, the feasibility of using neural networks to model the complex relationship between the parameters is been investigated.
ISBN:354027894X
9783540278948
ISSN:0302-9743
1611-3349
DOI:10.1007/11527503_86