A Multi-scale and Multi-pose Face Detection System

In this paper, the framework and implementation of a real time multi-scale face detection system using appearance-based learning method and multi-pose hybrid learning approach. Multiple scale and pose based object detection is attractive since it could accumulate the face models by autonomous learni...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science pp. 268 - 276
Main Authors Nam, Mi-Young, Rhee, Phill-Kyu
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the framework and implementation of a real time multi-scale face detection system using appearance-based learning method and multi-pose hybrid learning approach. Multiple scale and pose based object detection is attractive since it could accumulate the face models by autonomous learning process. Face image, however, can be approximated even though it is represented with many scales. A real time face detection determines the location and size of each human face(if any) in an input image. Detecting varying human face in video frames is an important task in many computer vision applications such as human-computer interface. The face detection proposed in this paper employs hybrid learning approach and statistical method. We employ FuzzyART and RBF Network and Mahalanobis distance. We achieve a very encouraging experimental results.
ISBN:9783540288336
3540288333
3540287574
9783540287575
ISSN:0302-9743
1611-3349
DOI:10.1007/11552499_30