A Multi-scale and Multi-pose Face Detection System
In this paper, the framework and implementation of a real time multi-scale face detection system using appearance-based learning method and multi-pose hybrid learning approach. Multiple scale and pose based object detection is attractive since it could accumulate the face models by autonomous learni...
Saved in:
Published in | Lecture notes in computer science pp. 268 - 276 |
---|---|
Main Authors | , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, the framework and implementation of a real time multi-scale face detection system using appearance-based learning method and multi-pose hybrid learning approach. Multiple scale and pose based object detection is attractive since it could accumulate the face models by autonomous learning process. Face image, however, can be approximated even though it is represented with many scales. A real time face detection determines the location and size of each human face(if any) in an input image. Detecting varying human face in video frames is an important task in many computer vision applications such as human-computer interface. The face detection proposed in this paper employs hybrid learning approach and statistical method. We employ FuzzyART and RBF Network and Mahalanobis distance. We achieve a very encouraging experimental results. |
---|---|
ISBN: | 9783540288336 3540288333 3540287574 9783540287575 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11552499_30 |