Analysis of Toy Model for Protein Folding Based on Particle Swarm Optimization Algorithm

One of the main problems of computational approaches to protein structure prediction is the computational complexity. Many researches use simplified models to represent protein structure. Toy model is one of the simplification models. Finding the ground state is critical to the toy model of protein....

Full description

Saved in:
Bibliographic Details
Published inAdvances in Natural Computation pp. 636 - 645
Main Authors Liu, Juan, Wang, Longhui, He, Lianlian, Shi, Feng
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of the main problems of computational approaches to protein structure prediction is the computational complexity. Many researches use simplified models to represent protein structure. Toy model is one of the simplification models. Finding the ground state is critical to the toy model of protein. This paper applies Particle Swarm Optimization (PSO) Algorithm to search the ground state of toy model for protein folding, and performs experiments both on artificial data and real protein data to evaluate the PSO-based method. The results show that on one hand, the PSO method is feasible and effective to search for ground state of toy model; on the other hand, toy model just can simulate real protein to some extent, and need further improvements.
Bibliography:This work was supported by the National Natural Science Foundation of China under grant no. 60301009.
ISBN:9783540283201
354028320X
3540283234
9783540283232
ISSN:0302-9743
1611-3349
DOI:10.1007/11539902_78