Return Address Randomization Scheme for Annuling Data-Injection Buffer Overflow Attacks

Buffer overflow(BOF) has been the most common form of vulnerability in software systems today, and many methods exist to defend software systems against BOF attacks. Among them, the instruction set randomization scheme, which makes attacker not to know the specific instruction set of the target mach...

Full description

Saved in:
Bibliographic Details
Published inInformation Security and Cryptology pp. 238 - 252
Main Authors Kim, Deok Jin, Kim, Tae Hyung, Kim, Jong, Hong, Sung Je
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2006
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Buffer overflow(BOF) has been the most common form of vulnerability in software systems today, and many methods exist to defend software systems against BOF attacks. Among them, the instruction set randomization scheme, which makes attacker not to know the specific instruction set of the target machine, is the most promising defense scheme because it defends all typical code-injection BOF attacks. However, this defense scheme can not cover data-injection BOF attacks like return-into-libc attacks. In order to defend against the data-injection BOF attacks as well as the code-injection BOF attacks, we propose an enhanced defense scheme randomizing not only the instruction sets but also the return addresses. Implementation results show that the proposed scheme can defend software systems against data-injection BOF attacks as well as code-injection BOF attacks without significant extra overheads.
Bibliography:This research was supported by the MIC(Ministry of Information and Communication), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA (Institue of Information Technology Assessment)(IITA-2005-C1090-0501-0018).
ISBN:3540496084
9783540496083
ISSN:0302-9743
1611-3349
DOI:10.1007/11937807_19