A Simple Quantile Regression via Support Vector Machine
This paper deals with the estimation of the linear and the nonlinear quantile regressions using the idea of support vector machine. Accordingly, the optimization problem is transformed into the Lagrangian dual problem, which is easier to solve. In particular, for the nonlinear quantile regression th...
Saved in:
Published in | Advances in Natural Computation pp. 512 - 520 |
---|---|
Main Authors | , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper deals with the estimation of the linear and the nonlinear quantile regressions using the idea of support vector machine. Accordingly, the optimization problem is transformed into the Lagrangian dual problem, which is easier to solve. In particular, for the nonlinear quantile regression the idea of kernel function is introduced, which allows us to perform operations in the input space rather than the high dimensional feature space. Experimental results are then presented which illustrate the performance of the proposed method. |
---|---|
ISBN: | 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539087_66 |