New Training Method and Optimal Structure of Backpropagation Networks
New algorithm was devised to speed up the convergence of backpropagation networks and the Bayesian Information Criterion was presented to obtain the optimal network structure. Nonlinear neural network problem can be partitioned into the nonlinear part in the weights of the hidden layers and the line...
Saved in:
Published in | Advances in Natural Computation pp. 157 - 166 |
---|---|
Main Authors | , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | New algorithm was devised to speed up the convergence of backpropagation networks and the Bayesian Information Criterion was presented to obtain the optimal network structure. Nonlinear neural network problem can be partitioned into the nonlinear part in the weights of the hidden layers and the linear part in the weights of the output layer. We proposed the algorithm for speeding up the convergence by employing the conjugate gradient method for the nonlinear part and the Kalman filter algorithm for the linear part. From simulation experiments with daily data on the stock prices in the Thai market, it was found that the algorithm and the Bayesian Information Criterion could perform satisfactorily. |
---|---|
ISBN: | 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539087_18 |