Harmony Search for Generalized Orienteering Problem: Best Touring in China
In order to overcome the drawbacks of mathematical optimization techniques, soft computing algorithms have been vigorously introduced during the past decade. However, there are still some possibilities of devising new algorithms based on analogies with natural phenomena. A nature-inspired algorithm,...
Saved in:
Published in | Advances in Natural Computation pp. 741 - 750 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In order to overcome the drawbacks of mathematical optimization techniques, soft computing algorithms have been vigorously introduced during the past decade. However, there are still some possibilities of devising new algorithms based on analogies with natural phenomena. A nature-inspired algorithm, mimicking the improvisation process of music players, has been recently developed and named Harmony Search (HS). The algorithm has been successfully applied to various engineering optimization problems. In this paper, the HS was applied to a TSP-like NP-hard Generalized Orienteering Problem (GOP) which is to find the utmost route under the total distance limit while satisfying multiple goals. Example area of the GOP is eastern part of China. The results of HS showed that the algorithm could find good solutions when compared to those of artificial neural network. |
---|---|
ISBN: | 9783540283201 354028320X 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539902_91 |