Predicting with Confidence – An Improved Dynamic Cell Structure
As a special type of Self-Organizing Maps, the Dynamic Cell Structures (DCS) network has topology-preserving adaptive learning capabilities that can, in theory, respond and learn to abstract from a much wider variety of complex data manifolds. However, the highly complex learning algorithm and non-l...
Saved in:
Published in | Advances in Natural Computation pp. 750 - 759 |
---|---|
Main Authors | , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As a special type of Self-Organizing Maps, the Dynamic Cell Structures (DCS) network has topology-preserving adaptive learning capabilities that can, in theory, respond and learn to abstract from a much wider variety of complex data manifolds. However, the highly complex learning algorithm and non-linearity behind the dynamic learning pattern pose serious challenge to validating the prediction performance of DCS and impede its spread in control applications, safety-critical systems in particular.
In this paper, we improve the performance of DCS networks by providing confidence measures on DCS predictions. We present the validity index, an estimated confidence interval associated with each DCS output, as a reliability-like measure of the network’s prediction performance. Our experiments using artificial data and a case study on a flight control application demonstrate an effective validation scheme of DCS networks to achieve better prediction performance with quantified confidence measures. |
---|---|
ISBN: | 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539087_99 |