Evolving Sequential Combinations of Elementary Cellular Automata Rules

Performing computations with cellular automata, individually or arranged in space or time, opens up new conceptual issues in emergent, artificial life type forms of computation, and opens up the possibility of novel technological advances. Here, a methodology for combining sequences of elementary ce...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Life pp. 461 - 470
Main Authors Martins, Claudio L. M., de Oliveira, Pedro P. B.
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Performing computations with cellular automata, individually or arranged in space or time, opens up new conceptual issues in emergent, artificial life type forms of computation, and opens up the possibility of novel technological advances. Here, a methodology for combining sequences of elementary cellular automata is presented, in order to perform a given computation. The problem at study is the well-known density classification task that consists of determining the most frequent bit in a binary string. The methodology relies on an evolutionary algorithm, together with analyses driven by background knowledge on dynamical behaviour of the rules and their parametric estimates, as well as those associated with the formal behaviour characterisation of the rules involved. The resulting methodology builds upon a previous approach available in the literature, and shows its efficacy by leading to 2 rule combinations already known, and to additional 26, apparently unknown so far.
ISBN:9783540288480
3540288481
ISSN:0302-9743
1611-3349
DOI:10.1007/11553090_47