Approximating the Longest Cycle Problem on Graphs with Bounded Degree

In 1993, Jackson and Wormald conjectured that if G is a 3-connected n-vertex graph with maximum degree d≥ 4 then G contains a cycle of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \...

Full description

Saved in:
Bibliographic Details
Published inComputing and Combinatorics pp. 870 - 884
Main Authors Chen, Guantao, Gao, Zhicheng, Yu, Xingxing, Zang, Wenan
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In 1993, Jackson and Wormald conjectured that if G is a 3-connected n-vertex graph with maximum degree d≥ 4 then G contains a cycle of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega(n^{\log_{d-1}2})$ \end{document}, and showed that this bound is best possible if true. In this paper we present an O(n3) algorithm for finding a cycle of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega(n^{\log_{b}2})$ \end{document} in G, where b =  max {64,4d + 1}. Our result substantially improves the best existing bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega(n^{\log_{2(d-1)^2+1}2})$ \end{document}.
ISBN:9783540280613
3540280618
ISSN:0302-9743
1611-3349
DOI:10.1007/11533719_88