Application of Chaotic Neural Model Based on Olfactory System on Pattern Recognitions
This paper presents a simulation of a biological olfactory neural system with a KIII set, which is a high-dimensional chaotic neural network. The KIII set differs from conventional artificial neural networks by use of chaotic attractors for memory locations that are accessed by, chaotic trajectories...
Saved in:
Published in | Advances in Natural Computation pp. 378 - 381 |
---|---|
Main Authors | , , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a simulation of a biological olfactory neural system with a KIII set, which is a high-dimensional chaotic neural network. The KIII set differs from conventional artificial neural networks by use of chaotic attractors for memory locations that are accessed by, chaotic trajectories. It was designed to simulate the patterns of action potentials and EEG waveforms observed in electrophysioloical experiments, and has proved its utility as a model for biological intelligence in pattern classification. An application on recognition of handwritten numerals is presented here, in which the classification performance of the KIII network under different noise levels was investigated. |
---|---|
ISBN: | 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539087_47 |