Exploring Simple Grid Polygons

We investigate the online exploration problem of a short-sighted mobile robot moving in an unknown cellular room without obstacles. The robot has a very limited sensor; it can determine only which of the four cells adjacent to its current position are free and which are blocked, i.e., unaccessible f...

Full description

Saved in:
Bibliographic Details
Published inComputing and Combinatorics pp. 524 - 533
Main Authors Icking, Christian, Kamphans, Tom, Klein, Rolf, Langetepe, Elmar
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the online exploration problem of a short-sighted mobile robot moving in an unknown cellular room without obstacles. The robot has a very limited sensor; it can determine only which of the four cells adjacent to its current position are free and which are blocked, i.e., unaccessible for the robot. Therefore, the robot must enter a cell in order to explore it. The robot has to visit each cell and to return to the start. Our interest is in a short exploration tour, i.e., in keeping the number of multiple cell visits small. For abitrary environments without holes we provide a strategy producing tours of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $S \leq C + \frac{1}{2} E -- 3$ \end{document}, where C denotes the number of cells – the area – , and E denotes the number of boundary edges – the perimeter – of the given environment. Further, we show that our strategy is competitive with a factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac43$ \end{document}, and give a lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac76$ \end{document} for our problem. This leaves a gap of only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac16$ \end{document} between the lower and the upper bound.
ISBN:9783540280613
3540280618
ISSN:0302-9743
1611-3349
DOI:10.1007/11533719_53