Head-and-Shoulder Detection in Varying Pose

Head-and-shoulder detection has been an important research topic in the fields of image processing and computer vision. In this paper, a head-and-shoulder detection algorithm based on wavelet decomposition technique and support vector machine (SVM) is proposed. Wavelet decomposition is used to extra...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Natural Computation pp. 12 - 20
Main Authors Sun, Yi, Wang, Yan, He, Yinghao, Hua, Yong
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Head-and-shoulder detection has been an important research topic in the fields of image processing and computer vision. In this paper, a head-and-shoulder detection algorithm based on wavelet decomposition technique and support vector machine (SVM) is proposed. Wavelet decomposition is used to extract features from real images, and linear SVM and non-linear SVM are trained for detection. Non-head-and-shoulder images can be removed by the linear SVM firstly, and then non-linear SVM detects head-and-shoulder images in detail. Varying head-and-shoulder pose can be detected from frontal and side views, especially from rear view. The experiment results prove that the method proposed is effective and fast to some extent.
ISBN:9783540283256
3540283250
3540283234
9783540283232
ISSN:0302-9743
1611-3349
DOI:10.1007/11539117_3