Head-and-Shoulder Detection in Varying Pose
Head-and-shoulder detection has been an important research topic in the fields of image processing and computer vision. In this paper, a head-and-shoulder detection algorithm based on wavelet decomposition technique and support vector machine (SVM) is proposed. Wavelet decomposition is used to extra...
Saved in:
Published in | Advances in Natural Computation pp. 12 - 20 |
---|---|
Main Authors | , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Head-and-shoulder detection has been an important research topic in the fields of image processing and computer vision. In this paper, a head-and-shoulder detection algorithm based on wavelet decomposition technique and support vector machine (SVM) is proposed. Wavelet decomposition is used to extract features from real images, and linear SVM and non-linear SVM are trained for detection. Non-head-and-shoulder images can be removed by the linear SVM firstly, and then non-linear SVM detects head-and-shoulder images in detail. Varying head-and-shoulder pose can be detected from frontal and side views, especially from rear view. The experiment results prove that the method proposed is effective and fast to some extent. |
---|---|
ISBN: | 9783540283256 3540283250 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539117_3 |