Fenton-like reaction triggered chemical redox-cycling signal amplification for ultrasensitive fluorometric detection of H2O2 and glucose
An ultrasensitive fluorescent biosensor is reported for glucose detection based on a Fenton-like reaction triggered chemical redox-cycling signal amplification strategy. In this amplified strategy, Cu2+ oxidizes chemically o-phenylenediamine (OPD) to generate photosensitive 2,3-diaminophenazine (DAP...
Saved in:
Published in | Analyst (London) Vol. 149; no. 2; pp. 546 - 552 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
15.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An ultrasensitive fluorescent biosensor is reported for glucose detection based on a Fenton-like reaction triggered chemical redox-cycling signal amplification strategy. In this amplified strategy, Cu2+ oxidizes chemically o-phenylenediamine (OPD) to generate photosensitive 2,3-diaminophenazine (DAP) and Cu+/Cu0. On the one hand, the generated Cu0 catalyzes the oxidation of OPD. On the other hand, H2O2 reacts with Cu+ to produce hydroxyl radicals (·OH) and Cu2+ through a Cu+-mediated Fenton-like reaction. The generated ·OH and recycled Cu2+ ions take turns oxidizing OPD to produce more photoactive DAP, triggering a self-sustaining chemical redox-cycling reaction and a remarkable fluorescent enhancement. It is worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Benefiting from H2O2-triggered chemical redox-cycling signal amplification, the strategy was exploited for the development of an ultrasensitive fluorescent biosensor for glucose determination. Glucose content monitoring was realized with a linear range from 1 nM to 1 μM and a limit of detection of 0.3 nM. This study validates the practicability of the chemical redox-cycling signal amplification on the fluorescent bioanalysis of glucose in human serum samples. It is expected that the method offers new opportunities to develop ultrasensitive fluorescent analysis strategy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0003-2654 1364-5528 1364-5528 |
DOI: | 10.1039/d3an01682j |