Hierarchical S-modified Cu porous nanoflakes for efficient CO2 electroreduction to formate

Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu–S NFs) are d...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 14; no. 37; pp. 13679 - 13688
Main Authors Li-Xia, Liu, Li, Xiang, Cai, Yanming, Du, Huitong, Liu, Fuqiang, Zhang, Jian-Rong, Fu, Jiaju, Zhu, Wenlei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 29.09.2022
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/d2nr03433f

Cover

Loading…
Abstract Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu–S NFs) are designed and constructed as an efficient electrocatalyst for CO2 conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu–S NFs are capable of delivering the ultrahigh formate current density up to 404.1 mA cm−2 with a selectivity of 89.8%. Electrochemical tests and theoretical calculations indicate that the superior performance of the designed catalysts may be attributed to the unique structure, which can provide abundant active sites, fast charge transfer, and highly active edge sites.
AbstractList Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu-S NFs) are designed and constructed as an efficient electrocatalyst for CO2 conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu-S NFs are capable of delivering the ultrahigh formate current density up to 404.1 mA cm-2 with a selectivity of 89.8%. Electrochemical tests and theoretical calculations indicate that the superior performance of the designed catalysts may be attributed to the unique structure, which can provide abundant active sites, fast charge transfer, and highly active edge sites.Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu-S NFs) are designed and constructed as an efficient electrocatalyst for CO2 conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu-S NFs are capable of delivering the ultrahigh formate current density up to 404.1 mA cm-2 with a selectivity of 89.8%. Electrochemical tests and theoretical calculations indicate that the superior performance of the designed catalysts may be attributed to the unique structure, which can provide abundant active sites, fast charge transfer, and highly active edge sites.
Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu–S NFs) are designed and constructed as an efficient electrocatalyst for CO2 conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu–S NFs are capable of delivering the ultrahigh formate current density up to 404.1 mA cm−2 with a selectivity of 89.8%. Electrochemical tests and theoretical calculations indicate that the superior performance of the designed catalysts may be attributed to the unique structure, which can provide abundant active sites, fast charge transfer, and highly active edge sites.
Author Du, Huitong
Li-Xia, Liu
Li, Xiang
Zhang, Jian-Rong
Fu, Jiaju
Cai, Yanming
Zhu, Wenlei
Liu, Fuqiang
Author_xml – sequence: 1
  givenname: Liu
  surname: Li-Xia
  fullname: Li-Xia, Liu
– sequence: 2
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
– sequence: 3
  givenname: Yanming
  surname: Cai
  fullname: Cai, Yanming
– sequence: 4
  givenname: Huitong
  surname: Du
  fullname: Du, Huitong
– sequence: 5
  givenname: Fuqiang
  surname: Liu
  fullname: Liu, Fuqiang
– sequence: 6
  givenname: Jian-Rong
  surname: Zhang
  fullname: Zhang, Jian-Rong
– sequence: 7
  givenname: Jiaju
  surname: Fu
  fullname: Fu, Jiaju
– sequence: 8
  givenname: Wenlei
  surname: Zhu
  fullname: Zhu, Wenlei
BookMark eNpdjr1OwzAYRS1UJEph4QkssbAE_JvYI4qAIlXqACwslWt_Fi6pXWzn_UkFYmC6dzj36pyjWUwRELqi5JYSru8ci5lwwbk_QXNGBGk479jsr7fiDJ2XsiOk1bzlc_S-DJBNth_BmgG_NPvkgg_gcD_iQ8ppLDiamPxgPqFgnzIG74MNECvu1wzDALbmlMGNtoYUcU1Ham8qXKBTb4YCl7-5QG-PD6_9slmtn577-1VzYLStjaZKCNJpZdjWAyWEeUqkpkwpTbyQcttap7dCGq67Vk0b6KwCY7RzzIPiC3Tz83vI6WuEUjf7UCwMg4kw-W9YRzknUopuQq__obs05jjZHSmlKGed5N_5WGMD
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID 7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d2nr03433f
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 13688
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7SR
7U5
7~J
8BQ
8FD
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F28
F5P
FR3
GGIMP
H13
HZ~
H~N
J3I
JG9
L7M
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
7X8
ID FETCH-LOGICAL-p216t-918440798a2bfe1002f1059128890f455b6cd9b45a39768216e7c8eaa9dd2fe83
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 08:36:57 EDT 2025
Mon Jun 30 03:40:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p216t-918440798a2bfe1002f1059128890f455b6cd9b45a39768216e7c8eaa9dd2fe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2718813275
PQPubID 2047485
PageCount 10
ParticipantIDs proquest_miscellaneous_2713305547
proquest_journals_2718813275
PublicationCentury 2000
PublicationDate 2022-09-29
PublicationDateYYYYMMDD 2022-09-29
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-29
  day: 29
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
SSID ssj0069363
Score 2.457854
Snippet Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the...
SourceID proquest
SourceType Aggregation Database
StartPage 13679
SubjectTerms Carbon dioxide
Catalysts
Charge transfer
Chemical reduction
Current density
Electrocatalysts
Gaseous diffusion
Liquid fuels
Selectivity
Title Hierarchical S-modified Cu porous nanoflakes for efficient CO2 electroreduction to formate
URI https://www.proquest.com/docview/2718813275
https://www.proquest.com/docview/2713305547
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF1RuNBD1VKqQmm1SL1Fps5-xN4jSoNSFOBQR0p7iXbXa8kCbJTYl_76zq7Xdig5QKXIiiZr5-ONZt5kvG8Q-go5VYdyyAOuIihQOGWBVFIH4NDSmFgxoW1H9-p6NJ2zywVftCPh_e6SSp3pP1v3lfwPqmADXO0u2Rcg210UDPAc8IUjIAzHZ2E8ze32YTfN5G7wM7gv0zyzlHJcD4BWO-1VWZTZnbw160bb2wlG2Pb_-IYM_AiclVVvdW4APLThsI_uD4IAXK7hHToXmOV1U84Hi1z2RmsDg0-Frq_hbL9kcZ_31u_u5GkNocQb_Z8OUK_aPozoYxOxNyJS2kzdOTNbbG1wZRtO1Mi7-FBpteLE1iAeUquBmpJiFVJGadanqrY9f32zvJjPZstkskheoT0CJQIE5b3zSfJj1ubhkaBujl73sVpxWiq-9dd-koIdr0jeoje-IMDnDbrv0I4pDtDrDZnI9-j3Js64xxmPa9zgjHucMSCIO5wx4Iz_xRlXJfY4H6L5xSQZTwM_EyN4IMNRBbkpZlCDi1gSlRmrn5tZhgwsIxZhxjhXI50Kxbi0RDOGc0ykYyOlSFOSmZh-QLtFWZiPCJuIMaOF0oaHTMGD6EjBWiUZlI0qPUIn7U-z9E6_XhLgMvGQkogfodPuZQhJts8kCwNf2a6hVkiORcfPWPMJ7fcedoJ2q1VtPgPRq9QXj-hf0ZNWzg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+S-modified+Cu+porous+nanoflakes+for+efficient+CO2+electroreduction+to+formate&rft.jtitle=Nanoscale&rft.au=Liu%2C+Li-Xia&rft.au=Li%2C+Xiang&rft.au=Cai%2C+Yanming&rft.au=Du%2C+Huitong&rft.date=2022-09-29&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=14&rft.issue=37&rft.spage=13679&rft_id=info:doi/10.1039%2Fd2nr03433f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon