Hierarchical S-modified Cu porous nanoflakes for efficient CO2 electroreduction to formate
Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu–S NFs) are d...
Saved in:
Published in | Nanoscale Vol. 14; no. 37; pp. 13679 - 13688 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
29.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu–S NFs) are designed and constructed as an efficient electrocatalyst for CO2 conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu–S NFs are capable of delivering the ultrahigh formate current density up to 404.1 mA cm−2 with a selectivity of 89.8%. Electrochemical tests and theoretical calculations indicate that the superior performance of the designed catalysts may be attributed to the unique structure, which can provide abundant active sites, fast charge transfer, and highly active edge sites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2040-3364 2040-3372 2040-3372 |
DOI: | 10.1039/d2nr03433f |