Substitutional doping of MoTe2/ZrS2 heterostructures for sustainable energy related applications
Stacking and/or substitutional doping are effective strategies to tune two-dimensional materials with desired properties, greatly extending the applications of the pristine materials. Here, by employing first-principles calculations, we propose that a pristine MoTe2/ZrS2 heterostructure is a disting...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 40; pp. 27017 - 27026 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
18.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Stacking and/or substitutional doping are effective strategies to tune two-dimensional materials with desired properties, greatly extending the applications of the pristine materials. Here, by employing first-principles calculations, we propose that a pristine MoTe2/ZrS2 heterostructure is a distinguished lithium-ion battery anode material with a low Li diffusion barrier (∼0.26 eV), and it has a high maximum Li storage capacity (476.36 mA h g−1) and a relatively low open-circuit voltage (0.16 V) at Li4/MoTe2/Li/ZrS2/Li4. The other heterostructures with different types can be achieved by substitutional doping and their potential applications in sustainable energy related areas are further unraveled. For instance, a type-II TeMoSe/ZrS2 heterostructure could be a potential direct Z-scheme photocatalyst for water splitting with a high solar-to-hydrogen conversion efficiency of 17.62%. The TeMoSe/SZrO heterostructure is predicted to be a potential candidate for application in highly efficient solar cells. Its maximum power conversion efficiency can be as high as 19.21%, which is quite promising for commercial applications. The present results will shed light on the sustainable energy applications of pristine or doped MoTe2/ZrS2 heterostructures in the future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/d3cp03563h |