Two-dimensional monolayer C5-10-16: a metallic carbon allotrope as an anode material for high-performance sodium/potassium-ion batteries

Carbonaceous materials are promising candidates as anode materials for non-lithium-ion batteries (NLIBs) due to their appealing properties such as good electrical conductivity, low cost, and high safety. However, graphene, a classic two-dimensional (2D) carbon material, is chemically inert to most m...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 26; no. 17; pp. 13395 - 13404
Main Authors Wen-Chun, Wang, Dai, Ya-Qun, Tian-Le, Zhao, Xiao-Juan, Ye, Xiao-Hong, Zheng, Jia, Ran, Chun-Sheng, Liu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Carbonaceous materials are promising candidates as anode materials for non-lithium-ion batteries (NLIBs) due to their appealing properties such as good electrical conductivity, low cost, and high safety. However, graphene, a classic two-dimensional (2D) carbon material, is chemically inert to most metal atoms, hindering its application as an electrode material for metal-ion batteries. Inspired by the unique geometry of a four-penta unit, we explore a metallic 2D carbon allotrope C5-10-16 composed of 5-10-16 carbon rings. The C5-10-16 monolayer is free from any imaginary frequencies in the whole Brillouin zone. Due to the introduction of a non-sp2 hybridization state into C5-10-16, the extended conjugation of π-electrons is disrupted, leading to the enhanced surface activity toward metal ions. We investigate the performance of C5-10-16 as the anode for sodium/potassium-ion batteries by using first-principles calculations. The C5-10-16 sheet has high theoretical specific capacities of Na (850.84 mA h g−1) and K (743.87 mA h g−1). Besides, C5-10-16 exhibits a moderate migration barrier of 0.63 (0.32) eV for Na (K), ensuring rapid charging/discharging processes. The average open-circuit voltages of Na and K are 0.33 and 0.62 V, respectively, which are within the voltage acceptance range of anode materials. The fully sodiated (potassiated) C5-10-16 shows tiny lattice expansions of 1.4% (1.3%), suggesting the good reversibility. Moreover, bilayer C5-10-16 significantly affects both the adsorption strength and the mobility of Na or K. All these results show that C5-10-16 could be used as a promising anode material for NLIBs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp05553a